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Abstract 

We prove that the Canonical Distortion Measure (CDM) [2, 3] is the 
optimal distance measure to use for I nearest-neighbour (l-NN) classifi
cation, and show that it reduces to squared Euclidean distance in feature 
space for function classes that can be expressed as linear combinations 
of a fixed set of features. PAC-like bounds are given on the sample
complexity required to learn the CDM. An experiment is presented in 
which a neural network CDM was learnt for a Japanese OCR environ
ment and then used to do I-NN classification. 

1 INTRODUCTION 

Let X be an input space, P a distribution on X, F a class of functions mapping X into Y 
(called the "environment"), Q a distribution on F and (J' a function (J': Y X Y -t [0 , ."1]. 
The Canonical Distortion Measure (CDM) between two inputs x, Xl is defined to be: 

p(x, Xl) = L (J'(f(x) , f(x l)) dQ(f). (1) 

Throughout this paper we will be considering real-valued functions and squared loss, so 
Y = ~ and (J'(y, yl) := (y - yl)2. The CDM was introduced in [2, 3], where it was 
analysed primarily from a vector quantization perspective. In particular, the CDM was 
proved to be the optimal distortion measure to use in vector quantization, in the sense of 
producing the best approximations to the functions in the environment F. In [3] some 
experimental results were also presented (in a toy domain) showing how the CDM may be 
learnt. 

The purpose of this paper is to investigate the utility of the CDM as a classification tool. 
In Section 2 we show how the CDM for a class of functions possessing a common feature 
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set reduces, via a change of variables, to squared Euclidean distance in feature space. A 
lemma is then given showing that the CDM is the optimal distance measure to use for 1-
nearest-neighbour (l-NN) classification. Thus, for functions possessing a common feature 
set, optimall-NN classification is achieved by using squared Euclidean distance in feature 
space. 

In general the CDM will be unknown, so in Section 4 we present a technique for learning 
the CDM by minimizing squared loss, and give PAC-like bounds on the sample-size re
quired for good generalisation. In Section 5 we present some experimental results in which 
a set of features was learnt for a machine-printed Japanese OCR environment, and then 
squared Euclidean distance was used to do I-NN classification in feature space. The exper
iments provide strong empirical support for the theoretical results in a difficult real-world 
application. 

2 THE CDM IN FEATURE SPACE 

Suppose each f E F can be expressed as a linear combination of a fixed set of features 
~ := (¢l, ... , ¢k). That is, for all f E F, there exists w := (WI,···, Wk) such that 

f = w . ~ = 2:7=1 Wi¢i. In this case the distribution Q over the environment F is a 
distribution over the weight vectors w. Measuring the distance between function values by 
()(y, y') := (y - yl)2, the CDM (1) becomes: 

p(x, x') = r [w· ~(x) - w· ~(X,)]2 dQ(w) = (~(x) - ~(X'))W(~(x) - ~(X'))' 
iE.k 

(2) 

where W = fw w'w dQ(w). is a k x k matrix. Making the change of variable ~ -t 

~JW, we have p(x, x') = 11~(x) - ~(x')112 . Thus, the assumption that the functions in 
the environment can be expressed as linear combinations of a fixed set of features means 
that the CDM is simply squared Euclidean distance in a feature space related to the original 
by a linear transformation. 

3 I-NN CLASSIFICATION AND THE CDM 

Suppose the environment F consists of classifiers, i.e. {O, 1 }-valued functions. Let f be 
some function in F and z := (Xl, f(Xl)), ... , (Xn, f(x n)) a training set of examples of 
f. In I-NN classification the classification of a novel x is computed by f(x*) where X* = 
argminx • d(x, Xi)), i.e. the classification of X is the classification of the nearest training 
point to x under some distance measure d. If both f and x are chosen at random, the 
expected misclassification error of the 1-NN scheme using d and the training points x := 
(xl, ... ,xn)is 

er(x, d) := EF Ex [J(x) - f(x* )]2 , (3) 

where x* is the nearest neighbour to x from {Xl, . . . , xn }. The following lemma is now 
immediate from the definitions. 

Lemma 1. For all sequences x = (Xl, . .. , X n ). er{x, d) is minimized ifd is the CDM p. 

Remarks. Lemma 1 combined with the results of the last section shows that for function 
classes possessing a common feature set, optimall-NN classification is achieved by using 
squared Euclidean distance in feature space. In Section 5 some experimental results on 
Japanese OCR are presented supporting this conclusion. 

The property of optimality of the CDM for I-NN classification may not be stable to small 
perturbations. That is, if we learn an approximationg to p, then even ifExxx (g(x, x') -
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p(x, x' ))2 is small it may not be the case that l-NN classification using 9 is also small. 
However, one can show that stability is maintained for classifier environments in which 
positive examples of different functions do not overlap significantly (as is the case for the 
Japanese OCR environment of Section 5, face recognition environments, speech recogni
tion environments and so on). We are currently investigating the general conditions under 
which stability is maintained. 

4 LEARNING THE CDM 

For most environments encountered in practice (e.g speech recognition or image recogni
tion), P will be unknown. In this section it is shown how p may be estimated or learnt using 
function approximation techniques (e.g. feedforward neural networks). 

4.1 SAMPLING THE ENVIRONMENT 

To learn the CDM p, the learner is provided with a class of functions (e.g. neural networks) 
9 where each 9 E 9 maps X x X ~ [0, M]. The goal of the learner is to find a 9 such 
that the error between 9 and the CDM p is small. For the sake of argument this error will 
be measured by the expected squared loss: 

erp(g) := Exxx [g(x, x') - p(x, x')f , (4) 

where the expectation is with respect to p2. 

Ordinarily the learner would be provided with training data in the form (x, x', p( x, x'}) 
and would use this data to minimize an empirical version of (4). However, p is unknown 
so to generate data of this form p must be estimated for each training pair x, x'. Hence to 
generate training sets for learning the CDM, both the distribution Q over the environment 
:F and the distribution P over the input space X must be sampled. So let f := (it, ... , f m) 
be m i.i.d. samples from :F according to Q and let x := (Xl, ... , x n ) be n i.i.d. samples 
from X according to P. For any pair Xi, X j an estimate of p( Xi, X j) is given by 

1 m 

P(Xi' Xj} := m ~ (J'(fdxd,fk(Xj )). (5) 
k=l 

This gives n (n - 1) /2 training triples, 

{(xi,Xj,p(xi,xj)),l::; i < j::; n} , 

which can be used as data to generate an empirical estimate of er p (g): 

(6) 

Only n(n - 1)/2 of the possible n 2 training triples are used because the functions 9 E 9 
are assumed to already be symmetric and to satisfy 9 (x, x) = 0 for all x (if this is not 
the case then set g'(X, x') := (g(x, x') + g(x', x))/2 if x =j:. x' and g'(X, x) = 0 and use 
g' := {g': 9 E g} instead). 

In [3] an experiment was presented in which 9 was a neural network class and (6) was 
minimized directly by gradient descent. In Section 5 we present an alternative technique 
in which a set of features is first learnt for the environment and then an estimate of p in 
feature space is constructed explicitly. 



248 J. Baxter and P. Bartlett 

4.2 UNIFORM CONVERGENCE 

We wish to ensure good generalisation from a 9 minimizing e~r r, in the sense that (for x , 
small 6, 5), 

Pr { x, r : :~~ lerx,f(g) - erp(g) I > 6} < 5, 

The following theorem shows that this occurs if both the number of functions m and the 
number of input samples n are sufficiently large. Some exotic (but nonetheless benign) 
measurability restrictions have been ignored in the statement of the theorem. In the state
ment of the theorem, N (E , 9) denotes the smallest 6 -cover of 9 under the L 1 ( P 2) norm, 
where {gl , . . . , gN} is an 6-cover of9 iffor all 9 E 9 there exists gi such that Ilgi - gil ~ 6. 

Theorem 2. Assume the range of the functions in the environment :F is no more than 
[-J B /2, J B /2) and in the class 9 (used to approximate the CDM) is no more than 

[0 , VB). For all 6 > 0 and 0 < 5 ~ 1. if 
32B4 4 

m> --log- (7) 
- 6 2 5 

and 
512B2 ( 512B 2 8) 

n 2: 6 2 logN(6,9) + log 6 2 + log;5 

then 

Proof For each 9 E 9 , define 

erx(g) := (2 ) 
nn-1 

l~i<j~n 

If for any x = (Xl, . . . , X n ), 

Pr {r: sup ler r(g) - erx(g) I > ~} ~ ~ , 
gE9 x , 2 2 

and 

(8) 

(9) 

(10) 

(II) 

Pr {x: sup lerx(g) - erp(g)1 > ~} ~ ~ , (12) 
gE9 2 2 

then by the triangle inequality (9) will hold. We treat (11) and (12) separately. 

Equation (11). To simplify the notation let gij , Pij and Pij denote 9 (Xi, X j), p( Xi, X j) and 
p(Xi' Xj) respectively. Now, 

2 

n(n - 1) 

4B < -,----:-
- n(n - 1) 

L (g ij - pij )2 - 2: (gij - Pij)2 
l~i<j~n 19<j~n 

2: (Pij - Pij) (2gij - Pij - Pij) 
l~i<j~n 

L (Pij - Pij) 
19<j~n 

1 m 

E.rx(J) - m 2: X(Jk) 
k=l 
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where x: :F -+ [0, 4B2] is defined by 

Thus, 

4B 
x (f) : = ----,----

n(n - 1) 
1 :Si<J:S n 

Pr {f: :~g I"r.,f(g) - e-r.(g) I > n S Pr {f EJ'x(f) - ~ t, xU,) > ~ } 
which is ~ 2 exp (_m€2/ (32B4)) by Hoeffding's inequality. Setting this less than 6/2 
gives the bound on m in theorem 2. 

Equation (12). Without loss of generality, suppose that n is even. The trick here is to split 
the sum over all pairs (Xi, X j) (with i < j) appearing in the definition of er x (g) into a 
double sum: 

~ 2 
erx(g) = ( )" [g(Xj, Xj) - p(Xi, Xj)]2 

nn-1 6 
1 ::;i<j:S n 

1 n-1 2 n /2 2 

= n _ 1 L ;; L [g(xo ,U), xO:(j)) - p(xo.(j), xO:(j))] , 
i=l j=l 

where for each i = 1, ... , n - 1, (J"i and (J"~ are permutations on {I, ... , n} such that 
{(J"d 1) , ... , (J"i (n/2)) n {(J"H 1), ... , (J"~( n/2)} is empty. That there exist permutations with 
this property such that the sum can be broken up in this way can be proven easily by induc
tion. Now, conditional on each (J"i, the n/2 pairs Xi := {(Xo.(j), xO:(j)), j = 1, ... , n/2} 
are an i.i.d. sample from X x X according to p2. So by standard results from real-valued 
function learning with squared loss [4]: 

{ 
2 n/2 } 

Pr Xi: suP ;;?= [g(XO.(j), Xo:u)) - p(xo.U). XO:(j))]2 - erp(g) > ~ 
gEQ J=l 

~ 4N (48~2 ' g) exp ( - 2;:~2 ) . 
Hence, by the union bound, 

Pr { x: ~~g /erx(g) - erp(g) I > ~} ~ 4(n - l)N (48~2 ' g) exp ( - 2;:~2 ) . 
Setting n as in the statement of the theorem ensures this is less than 6/2. D 

Remark. The bound on m (the number of functions that need to be sampled from the 
environment) is independent of the complexity of the class g. This should be contrasted 
with related bias learning (or equivalently, learning to learn) results [1] in which the number 
of functions does depend on the complexity. The heuristic explanation for this is that here 
we are only learning a distance function on the input space (the CDM), whereas in bias 
learning we are learning an entire hypothesis space that is appropriate for the environment. 
However, we shall see in the next section how for certain classes of problems the CDM can 
also be used to learn the functions in the environment. Hence in these cases learning the 
CDM is a more effective method of learning to learn. 

5 EXPERIMENT: JAPANESE OCR 

To verify the optimality of the CDM for I-NN classification, and also to show how 
it can be learnt in a non-trivial domain (only a toy example was given in [3]), the 
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COM was learnt for a Japanese OCR environment. Specifically, there were 3018 func
tions I in the environment F, each one a classifier for a different Kanji character. A 
database containing 90,918 segmented, machine-printed Kanji characters scanned from 
various sources was purchased from the CEDAR group at the State University of New 
York, Buffalo The quality of the images ranged from clean to very degraded (see 
http://www . cedar .buffalo. edu/Databases/JOcR/). 

The main reason for choosing Japanese OCR rather than English OCR as a test-bed was 
the large number of distinct characters in Japanese. Recall from Theorem 2 that to get good 
generalisation from a learnt COM, sufficiently many functions must be sampled from the 
environment. If the environment just consisted of English characters then it is likely that 
"sufficiently many" characters would mean all characters, and so it would be impossible to 
test the learnt COM on novel characters not seen in training. 

Instead of learning the COM directly by minimizing (6), it was learnt implicitly by first 
learning a set of neural network features for the functions in the environment. The features 
were learnt using the method outlined in [1], which essentially involves learning a set of 
classifiers with a common final hidden layer. The features were learnt on 400 out of the 
3000 classifiers in the environment, using 90% of the data in training and 10% in testing. 
Each resulting classifier was a linear combination of the neural network features. The 
average error of the classifiers was 2.85% on the test set (which is an accurate estimate as 
there were 9092 test examples). 

Recall from Section 2 that if all f E F can be expressed as I = W . 4> for a fixed feature 
set 4>, then the COM reduces to p{x, x') = (4)(x) - 4>(x' ))W(4>{x) - 4>(XI ))' where 
W = fw w/w dQ(w). The result of the learning procedure above is a set of features 

ci> and 400 weight vectors w l, . . . , W 400, such that for each of the character classifiers fi 
used in training, Ii :: Wi . ci>. Thus, g(x, x') := (ci>(x) - ci>(X'))W(ci>(x) - 4>(X'))' is 
an empirical estimate of the true CDM, where W := L;~~ W:Wi. With a linear change 
of variable ci> -+ ci>VW, 9 becomes g(x, x') = 114>(x) - ci>(x')112. This 9 was used to do 
I-NN classification on the test examples in two different experiments. 

In the first experiment, all testing and training examples that were not an example of one 
of the 400 training characters were lumped into an extra category for the purpose of clas
sification. All test examples were then given the label of their nearest neighbour in the 
training set under 9 (i.e. , initially all training examples were mapped into feature space 
to give {ci>( Xl)' ... , ci>( X n )}. Then each test example was mapped into feature space and 
assigned the same label as argminx.llci>( x) - ci>( Xi) 11 2).The total misclassification error was 
2.2%, which can be directly compared with the misclassification error of the original clas
sifiers of 2.85%. The COM does better because it uses the training data explicitly and the 
information stored in the network to make a comparison, whereas the classifiers only use 
the information in the network. The learnt COM was also used to do k-NN classification 
with k > 1. However this afforded no improvement. For example, the error of the 3-NN 
classifier was 2.54% and the error of the 20-NN classifier was 3.99%. This provides an 
indication that the COM may not be the optimal distortion measure to use if k-NN classifi
cation (k > 1) is the aim. 

In the second experiment 9 was again used to do I-NN classification on the test set, but 
this time all 3018 characters were distinguished. So in this case the learnt COM was being 
asked to distinguish between 2618 characters that were treated as a single character when 
it was being trained. The misclassification error was a surprisingly low 7.5%. The 7.5% 
error compares favourably with the 4.8% error achieved on the same data by the CEDAR 
group, using a carefully selected feature set and a hand-tailored nearest-neighbour routine 
[5]. In our case the distance measure was learnt from raw-data input, and has not been the 
subject of any optimization or tweaking. 
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Figure 1: Six Kanji characters (first character in each row) and examples of their four 
nearest neighbours (remaining four characters in each row). 

As a final, more qualitative assessment, the learnt CDM was used to compute the dis
tance between every pair of testing examples, and then the distance between each pair of 
characters (an individual character being represented by a number of testing examples) 
was computed by averaging the distances between their constituent examples. The near
est neighbours of each character were then calculated. With this measure, every character 
turned out to be its own nearest neighbour, and in many cases the next-nearest neighbours 
bore a strong subjective similarity to the original. Some representative examples are shown 
in Figure 1. 

6 CONCLUSION 

We have shown how the Canonical Distortion Measure (CDM) is the optimal distortion 
measure for I-NN classification, and that for environments in which all the functions can 
be expressed as a linear combination of a fixed set of features, the Canonical Distortion 
Measure is squared Euclidean distance in feature space. A technique for learning the CDM 
was presented and PAC-like bounds on the sample complexity required for good generali
sation were proved. 

Experimental results were presented in which the CDM for a Japanese OCR environment 
was learnt by first learning a common set of features for a subset of the character classifiers 
in the environment. The learnt CDM was then used as a distance measure in I-NN neigh
bour classification, and performed remarkably well, both on the characters used to train it 
and on entirely novel characters. 
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