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Abstract 

Estimating motion in scenes containing multiple moving objects 
remains a difficult problem in computer vision. A promising ap
proach to this problem involves using mixture models, where the 
motion of each object is a component in the mixture. However, ex
isting methods typically require specifying in advance the number 
of components in the mixture, i.e. the number of objects in the 
scene. 

• 
Here we show that the number of objects can be estimated auto
matically in a maximum likelihood framework, given an assumption 
about the level of noise in the video sequence. We derive analytical 
results showing the number of models which maximize the likeli
hood for a given noise level in a given sequence. We illustrate these 
results on a real video sequence, showing how the phase transitions 
correspond to different perceptual organizations of the scene. 

Figure la depicts a scene where motion estimation is difficult for many computer 
vision systems. A semi-transparent surface partially occludes a second surface, 
and the camera is translating horizontally. Figure 1 b shows a slice through the 
horizontal component of the motion generated by the camera - points that are 
closer to the camera move faster than those further away. In practice, the local 
motion information would be noisy as shown in figure lc and this imposes conflicting 
demands on a motion analysis system - reliable estimates require pooling together 
many measurements while avoiding mixing together measurements derived from the 
two different surfaces. 
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Figure 1: a: A simple scene that can cause problems for motion estimation. One surface 
partially occludes another surface. b: A cross section through the horizontal motion field 
generated when the camera translates horizontally. Points closer to the camera move 
faster. c: Noisy motion field. In practice each local measurement will be somewhat noisy 
and pooling of information is required. d: A cross section through the output of a multiple 
motion analysis system. Points are assigned to surfaces (denoted by different plot symbols) 
and the motion of each surface is estimated. 
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Figure 2: The "correct" number of surfaces in a given scene is often ambiguous. Was the 
motion here generated by one or two surfaces? 

Significant progress in the analysis of such scenes has been achieved by multiple 
motion analyzers - systems that simultaneously segment the scene into surfaces and 
estimating the motion of each surface [9]. Mixture models are a commonly used 
framework for performing mUltiple motion estimation [5, 1, 10]. Figure 1d shows 
a slice through the output of a multiple motion analyzer on this scene - pixels are 
assigned to one of two surfaces and motion information is only combined for pixels 
belonging to the same surface. 

The output shown in figure 1d was obtained by assuming the scene contains two 
surfaces. In general, of course, one does not know the number of surfaces in the 
scene in advance. Figure 2 shows the difficulty in estimating this number. It is not 
clear whether this is very noisy data generated by a single surface, or less noisy 
data generated by two surfaces. There seems no reason to prefer one description 
over another. Indeed, the description where there are as many surfaces as pixels is 
also a valid interpretation of this data. 

Here we take the approach that there is no single "correct" number of surfaces for 
a given scene in the absence of any additional assumptions. However, given an 
assumption about the noise in the sequence, there are more likely and less likely 
interpretations. Intuitively, if we know that the data in figure 2a was taken with 
a very noisy camera, we would tend to prefer the one surface solution - adding 
additional surfaces would cause us to fit the noise rather than the data. However, if 
we know that there is little noise in the sequence, we would prefer solutions that use 
many surfaces, there is a lot less danger of "overfitting". In this paper} we show, 

1 A longer version of this paper is available on the author's web page. 
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following [6, 8] that this intuition regarding the dependence of number of surfaces to 
assumed noise level is captured in the maximum likelihood framework. We derive 
analytical results for the critical values of noise levels where the likelihood function 
undergoes a "phase transition" - from being maximized by a single model to being 
maximized by mUltiple models. We illustrate these transitions on synthetic and real 
video data. 

1 Theory 

1.1 Mixture Models for optical flow 

In mixture models for optical flow (cf. [5, 1]) the scene is modeled as com
posed of K surfaces with the velocity of each vsurface at location (x, y) given by 
(uk(x,y),vk(x,y). The velocity field is parameterized by a vector f)k. A typical 
choice [9] is the affine representation: 

Uk (x, y) = f)~ + f)~ x + f)~ Y 

vk(x, y) = f)! + f)~x + f):y 

(1) 

(2) 

The affine family of motions includes rotations, translations, scalings and shears. It 
corresponds to the 2D projection of a plane undergoing rigid motion in depth. 

Corresponding pixels in subsequent frames are assumed to have identical intensity 
values, up to imaging noise which is modeled as a Gaussian with variance a2 • The 
task of multiple motion estimation is to find the most likely motion parameter values 
given the image data. A standard derivation (see e.g. [1]) gives the following log 
likelihood function for the parameters e: 

K 

lee) = L log(L e-R~(x.Y)/2u2) (3) 
x,y k=l 

With Rk(X, y) the residual intensity at pixel (x, y) for velocity k: 

Rk(x, y) = Ix (x, y)uk(x, y) + Iy(x, y)vk(x, y) + It(x, y) (4) 

where Ix, Iy,It denote the spatial and temporal derivatives of the image sequence. 
Although our notation does not make it explicit, Rk(X, y) is a function of f)k through 
equations 1-2. As in most mixture estimation applications, equation 3 is not maxi
mized directly, but rather an Expectation-Maximization (EM) algorithm is used to 
iteratively increase the likelihood [3]. 

1.2 Maximum Likelihood not necessarily with maximum number of 
models 

It may seem that since K is fixed in the likelihood function (equation 3) there is 
no way that the number of surfaces can be found by maximizing the likelihood. 
However, maximizing over the likelihood may lead to a a solution in which some 
of the f) parameters are identical [6, 5, 8]. In this case, although the number of 
surfaces is still K, the number of distinct surfaces may be any number less than K. 

Consider a very simple case where K = 2 and the motion of each surface is restricted 
to horizontal translation u(x, y) = u, vex, y) = O. The advantage of this simplified 
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Figure 3: The log likelihood for the data in figure 2 undergoes a phase transition when a 
is varied. For small values of a the likelihood has two maxima, and at both these maxima 
the two motions are distinct. For large a 2 the likelihood function has single maximum at 
the origin, corresponding to the solution where both velocities are equal to zero, or only 
one unique surface. 

case is that the likelihood function is a function of two variables and can be easily 
visualized. Figure 3 shows the likelihood function for the data in figure 2 as (7 is 
varied. Observe that for small values of (72 the likelihood has two maxima, and 
at both these maxima the two motions are distinct. For large (72 the likelihood 
function has single maximum at the origin, corresponding to the solution where 
both velocities are equal to zero, or only one unique surface. This is a simple 
example where the ML solution corresponds to a small number of unique surfaces. 

Can we predict the range of values for (7 for which the likelihood function has a 
maximum at the origin? This happens when the gradient of the likelihood at the 
origin is zero and the Hessian has two negative eigenvalues. It is easy to show 
that the if the data has zero mean, the gradient is zero regardless of (7. As for the 
Hessian, H, direct calculation gives: 

-~ ) 
A.-I 
20-~ 

(5) 

where E is the mean squared residual of a single motion and c is a positive constant. 
The two eigenvalues are proportional to -1 and E / (72 -1. So the likelihood function 
has a local maximum at the origin if and only if E < (72. (see [6, 4, 8] for a similar 
analysis in other contexts). 

This result makes intuitive sense. Recall that (72 is the expected noise variance. 
Thus if the mean squared residual is less than (72 with a single surface, there is no 
need to add additional surfaces. The result on the Hessian shows that this intuition 
is captured in the likelihood function. There is no need to introduce additional 
"complexity costs" to avoid overfitting in this case. 

More generally, if we assume the velocity fields are of general parametric form, the 
Hessian evaluated at the point where both surfaces are identical has the form: 

-~ ) b-F 20-

(6) 

where E and F are matrices: 

(7) 
z ,y 
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Figure 4: a: data generated by two lines. b: the predicted phase diagram for the 
likelihood of this dataset in a four component mixture. The phase transitions are at 
(J" = 0.084, 0.112, 0.8088 

F = L d(x, y)d(x, y)t (8) 
:t,Y 

with d(x, y) = aR~~,y), and R(x, y) the residual as before. 

A necessary and sufficient condition for the Hessian to have only negative eigenvalues 
is: 

(9) 

Thus when the maximal eigenvalue of F-1 E is less than (12 the fit with a single 
model is a local maximum of the likelihood. Note that F- 1 E is very similar to a 
weighted mean squared error, with every residual weighted by a positive definite 
matrix (E sums all the residuals times their weight, and F sums all the weights, so 
F-1 E is similar to a weighted average). 

The above analysis predicts the phase transition of a two component mixture likeli
hood, i.e. the critical value of (12 such that above this critical value, the maximum 
likelihood solution will have identical motion parameters for both surfaces. This 
analysis can be straightforwardly generalized to finding the first phase transition of 
a K component mixture, although the subsequent transitions are harder to analyze. 

2 Results 

The fact that the likelihood function undergoes a phase transition as (1 is varied 
predicts that a ML technique will converge to different number of distinct models 
as (1 is varied. We first illustrate these phase transitions on a ID line fitting prob
lem which shares some of the structure of multiple motion analysis and is easily 
visualized. 

Figure 4a shows data generated by two lines with additive noise, and figure 4b 
shows a phase diagram calculated using repeated application of equation 9; i.e. by 
solving equation 9 for all the data, taking the two line solution obtained after the 
transition, and repeating the calculation separately for points assigned to each of 
the two lines. 

Figure 5 shows the output of an EM algorithm on this data set. Initial conditions 
are identical in all runs, and the algorithm converges to one, two, three or four 
distinct lines depending on (1. 

We now illustrate the phase transitions on a real video sequence. Figures 6- 8 
show the output of an EM motion segmentation algorithm with four components 
on the MPEG flower garden sequence (cf. [9, 10]). The camera is translating in 
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Figure 5: The data in figure 1 are fit with one, two, three or four models depending on 
a. The results of EM with identical initial conditions are shown, only a is varied. The 
transitions are consistent with the theoretical predictions . 
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Figure 6: The first phase transition. The algorithm finds two segments corresponding 
to the tree and the rest of the scene. The critical value of a 2 for which this transition 
happens is consistent with the theoretical prediction. 

the scene, and objects move with different velocities due to parallax. The phase 
transitions correspond to different perceptual organizations of the scene - first the 
tree is segmented from the background, then branches are split from the tree, and 
finally the background splits into the flower bed and the house. 

3 Discussion 

Estimating the number of components in a Gaussian mixture is a well researched 
topic in statistics and data mining [7]. Most approaches involve some tradeoff 
parameter to balance the benefit of an additional component versus the added 
complexity [2]. Here we have shown how this tradeoff parameter can be implicitly 
specified by the assumed level of noise in the image sequence. 

While making an assumption regarding a may seem rather arbitrary in the abstract 
Gaussian mixture problem, we find it quite reasonable in the context of motion es
timation, where the noise is often a property of the imaging system, not of the 
underlying surfaces. Furthermore, as the phase diagram in figure 4 shows, a wide 
range of assumed a values will give similar answer, suggesting that an exact speci
fication of a is not needed. In current work we are exploring the use of weak priors 
on a as well as comparing our method to those based on cross validation [7] . 
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Figure 7: The second phase transition. The algorithm finds three segments - branches 
which are closer to the camera than the rest of the tree are segmented from it. Since the 
segmentation is based solely on motion, portions of the flower bed that move consistently 
with the branches are erroneously grouped with them. 
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Figure 8: The third phase transition. The algorithm finds four segments - the Bower bed 
and the house are segregated. 

Our analytical and simulation results show that an assumption of the noise level 
in the sequence enables automatic determination of the number of moving objects 
using well understood maximum likelihood techniques. Furthermore, for a given 
scene, varying the assumed noise level gives rise to different perceptually meaningful 
segmentations. Thus mixture models may be a first step towards a well founded 
probabilistic framework for perceptual organization. 
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