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We study on-line generalized linear regression with multidimensional 
outputs, i.e., neural networks with multiple output nodes but no hidden 
nodes. We allow at the final layer transfer functions such as the soft­
max function that need to consider the linear activations to all the output 
neurons. We use distance functions of a certain kind in two completely 
independent roles in deriving and analyzing on-line learning algorithms 
for such tasks. We use one distance function to define a matching loss 
function for the (possibly multidimensional) transfer function, which al­
lows us to generalize earlier results from one-dimensional to multidimen­
sional outputs. We use another distance function as a tool for measuring 
progress made by the on-line updates. This shows how previously stud­
ied algorithms such as gradient descent and exponentiated gradient fit 
into a common framework. We evaluate the performance of the algo­
rithms using relative loss bounds that compare the loss of the on-line 
algoritm to the best off-line predictor from the relevant model class, thus 
completely eliminating probabilistic assumptions about the data. 

1 INTRODUCTION 

In a regression problem, we have a sequence of n-dimensional real valued inputs Zt E R n , 

t = 1, ... ,f, and for each input Zt a k-dimensional real-valued desired output Yt E R". 
Our goal is to find a mapping that at least approximately models the dependency between 
Zt and Yt. Here we consider the parametric case Yt = f (w; Zt) where the actual output Yt 
corresponding to the input Zt is determined by a parameter vector w E Rm (e.g., weights 
in a neural network) through a given fixed model f (e.g., a neural network architecture). 
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Thus, we wish to obtain parameters w such that, in some sense, I(w;:z:t} ~ Yt for all 
t. The most basic model 1 to consider is the linear one, which in the one-dimensional 
case k = 1 means that I(w;:z:t) = w . :Z:t for w E Rfl. In the multidimensional case 
we actually have a whole matrix 0 E Rkxfl of parameters and 1(0;:z:t} = O:Z:t. The 
goodness of the fit is quantitatively measured in terms of a loss function; the square loss 
given by Lt,j (Yt,j - ilt,j)2 /2 is a popular choice. 

In generalized linear regression [MN89] we fix a transfer function 4> and apply it on top of a 
linear model. Thus, in the one-dimensional case we would have I(w;:z:t) = ¢(w·:z:t). Here 
¢ is usually a continuous increasing function from R to R, such as the logistic function 
that maps z to 1/(1 + e- Z ). It is still possible to use the square loss, but this can lead to 
problems. In particular, when we apply the logistic transfer function and try to find a weight 
vector w that minimizes the total square loss over f examples (:Z:t, Yt), we may have up to 
£fl local minima [AHW95, Bud93]. Hence, some other choice of loss function might be 
more convenient. In the one-dimensional case it can be shown that any continuous strictly 
increasing transfer function ¢ has a specific matching loss function LtP such that, among 
other useful properties, Lt LtP(Yt, ¢(w . :z:t}) is always convex in w, so local minima are 
not a problem [AHW95]. For example, the matching loss function for the logistic transfer 
function is the relative entropy (a generalization of the logarithmic loss for continuous­
valued outcomes). The square loss is the matching loss function for the identity transfer 
function (i.e., linear regression). 

The main theme of the present paper is the application of a particular kind of distance func­
tions to analyzing learning algorithms in (possibly multidimensional) generalized linear 
regression problems. We consider a particular manner in which a mapping 4>: Rk -+ Rk 
can be used to define a distance function D.4> : Rk x Rk -+ R; the assumption we must 
make here is that 4> has a convex potential function. The matching loss function LtP men­
tioned above for a transfer function ¢ in the one-dimensional case is given in terms of 
the distance function D.tP as LtP(¢(a), ¢(ii)) = D.tP(ii, a). Here, as whenever we use the 
matching loss LtP (y, iI), we assume that Y and iI are in the range of ¢, so we can write 
Y = ¢(a) and iI = ¢(ii) for some a and ii. Notice that for k = 1, any strictly increasing 
continuous function has a convex potential (i.e., integral) function. In the more interesting 
case k > 1, we can consider transfer functions such as the softmax function, which is com­
monly used to transfer arbitrary vectors a E Rk into probability vectors y (i.e., vectors 
such that iii ~ 0 for all i and Li iii = 1). The matching loss function for the softmax func­
tion defined analogously with the one-dimensional case turns out to be the relative entropy 
(or Kul1back-Leibler divergence), which indeed is a commonly used measure of distance 
between probability vectors. For the identity transfer function, the matching loss function 
is the squared Euclidean distance. 

The first result we get from this observation connecting matching losses to a general notion 
of distance is that certain previous results on generalized linear regression with matching 
loss on one-dimensional outputs [HKW95] directly generalize to multidimensional out­
puts. From a more general point of view, a much more interesting feature of these distance 
functions is how they allow us to view certain previously known learning algorithms, and 
introduce new ones, in a simple unified framework. To briefly explain this framework with­
out unnecessary complications, we restrict the foUowing discussion to the case k = 1, i.e., 
f(w;:z:) = ¢(w . :z:) E R with w E Rfl. 

We consider on-line learning algorithms, by which we here mean an algorithm that pro­
cesses the training examples one by one, the pair (:Z:t, Yt) being processed at time t. Based 
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on the training examples the algorithm produces a whole sequence of weight vectors Wt, 

t = 1, ... ,f.. At each time t the old weight vector Wt is updated into WtH based on Zt and 
Yt. The best-known such algorithm is on-line gradient descent. To see some alternatives, 
consider first a distance function ll.,p defined on R n by some function ,p: Rn ~ Rn. 
(Thus, we assume that,p has a convex potential.) We represent the update somewhat indi­
rectly by introducing a new parameter vector 6t ERn from which the actual weights Wt 

are obtained by the mapping Wt = ,p{6t ). The new parameters are updated by 

(1) 

where TJ > 0 is a learning rate. We call this algorithm the general additive algorithm with 
parameterization function ,p. Notice that here 6 is updated by the gradient with respect 
to w, so this is not just a gradient descent with reparameterization [JW98]. However, we 
obtain the usual on-line gradient descent when ,p is the identity function. When,p is 
the softmax function, we get the so-called exponentiated gradient (EG) algorithm [KW97 , 
HKW95]. 

The connection of the distance function ll.,p to the update (1) is two-fold. First, (1) can 
be motivated as an approximate solution to a minimization problem in which the distance 
ll.,p (6t , 6tH ) is used as a kind of penalty term to prevent too drastic an update based on 
a single example. Second, the distance function ll.,p can be used as a potential function 
in analyzing the performance of the resulting algorithm. The same distance functions have 
been used previously for exactly the same purposes [KW97, HKW95] in important special 
cases (the gradient descent and EG algorithms) but without realizing the full generality of 
the method. 

It should be noted that the choice of the parameterization function ,p is left completely 
free, as long as ,p has a convex potential function. (In contrast, the choice of the transfer 
function ¢ depends on what kind of a regression problem we wish to solve.) Earlier work 
suggests that the softmax parameterization function (Le., the EG algorithm) is particularly 
suited for situations in which some sparse weight vector W gives a good match to the 
data [HKW95, KW97]. (Because softmax normalizes the weight vector and makes the 
components positive, a simple transformation of the input data is typically added to realize 
positive and negative weights with arbitrary norm.) 

In work parallel to this, the analogue of the general additive update (1) in the context of 
linear classification, i.e., with a threshold transfer function, has recently been developed 
and analyzed by Grove et al. [GLS97] with methods and results very similar to ours. Cesa­
Bianchi [CB97] has used somewhat different methods to obtain bounds also in cases in 
which the loss function does not match the transfer function. Jagota and Warmuth [JW98] 
view (1) as an Euler discretization of a system of partial differential equations and investi­
gate the performance of the algorithm as the discretization parameter approaches zero. 

The distance functions we use here have previously been applied in the context of expo­
nential families by Amari [Ama85] and others. Here we only need some basic technical 
properties of the distance functions that can easily be derived from the definitions. For a 
discussion of our line of work in a statistical context see Azoury and Warmuth [AW97]. 

In Section 2 we review the definition of a matching loss function and give examples. Sec­
tion 3 discusses the general additive algorithm in more detail. The actual relative on-line 
loss bounds we have for the general additive algorithm are explained in Section 4. 
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2 DISTANCE FUNCTIONS AND MATCIllNG LOSSES 

Let 4>: R k -t R k be a function that has a convex potential function P 4> (i.e., 4> = V' P 4> 
for some convex P 4>: Rk -4 R). We first define a distance/unction A4> for 4> by 

(2) 

Thus, the distance A4>(a, a) is the error we make if we approximate P 4>(a) by its first­

order Taylor polynomial around a. Convexity of P 4> implies that A4> is convex in its first 

argument. Further, A4>(a, a) is nonnegative, and zero if and only if 4>(a) = 4>( a). 
~ 

We can alternatively write (2) as A4>(a, a) = I: (4)(r) - 4>(a)) . dr where the integral is 
a path integral the value of which must be independent of the actual path chosen between 
a and a. In the one-dimensional case, the integral is a simple definite integral, and ¢ 
has a convex potential (i.e., integral) function if it is strictly increasing and continuous 
[AHW95, HKW95]. 

Let now 4> have range V 4> ~ Rk and distance function A4>' Assuming that there is a 

function L4>: V4> x V4> -4 R such that L4>(4)(a) , 4>(a» = A4>(a, a) holds for all a and 
a, we say that L4> is the matching loss function for 4>. 

Example 1 Let 4> be a linear function given by 4>(a) = Aa where A E R kxk is symmetri­
cal and positive definite. Then 4> has the convex potential function P 4> (a) = aT Aa /2, and 

(2) gives A4>(a, a) = Ha - a)T A(a - a). Hence, L4>(Y' y) = t(y - y)T A-l(y - y) 
forally,YERk. 0 

Example2 Let 0': Rk -4 Rk, O'i(a) = exp(a;)/E7=1 exp(aj), be the softmax function. 

It has a potential function given by PO'(a) = In E7=1 exp(aj). To see that PO' is convex, 

notice that the Hessian n2PO' is given by D2PO'(a);j = dijO'i(a) - O'da)O'j(a). Given 
a vector z E Rk, let now X be a random variable that has probability O';{a) of taking 

the value Xi· We have zTDO'(a)z = E7=1 O'i{a)xl- E7=1 E7=1 0'; (a)xiO'j(a)xj = 
EX2 - (EX)2 = VarX ~ O. Straightforward algebra now gives the relative entropy 

LO'(y, y) = E;=l Yj In(Yj/Yj) as the matching loss function. (To allow Yj = 0 or Yj = 0, 
we adopt the standard convention that OlnO = Oln(O/O) = 0 and yln(y/O) = 00 for 
y> 0.) 0 

In the relative loss bound proofs we use the basic property [JW98, Ama85] 

This shows that our distances do not satisfy the triangle inequality. Usually they are not 
symmetrical, either. 

3 THE GENERAL ADDITIVE ALGORITHM 

We consider on-line learning algorithms that at time t -first receive an input Zt E R n , 

then produce an output Yt E R k, and finally receive as feedback the desired output Yt E 
Rk. To define the general additive algorithm. assume we are given a transfer function 
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l/J: Rk ~ Rk that has a convex potential function. (We wi11later use the matching loss as 
a performance measure.) We also require that all the desired outputs Y t are in the range 
of l/J. The algorithm's predictions are now given by Yt = l/J(Ot:et) where Ot E Rkxn is 
the algorithm's weight matrix at time t. To see how the weight matrix is updated, assume 
further we have a parameterization function ..p: R n ~ R n with a distance D....p. The 
algorithm maintains kn real-valued parameters. We denote by 8 t the k x n matrix of the 
values ofthese parameters immediately before trial t. Futher, we denote by 8t ,i the jth row 
of 8t. and by ..p(8t} the matrix with ..p(8t,i) as its jth row. Given initial parameter values 
8 1 and a learning rate 1] > 0, we now define the general additive (GA) algorithm as the 
algorithm that repeats at each trial t the following prediction and update steps. 

Prediction: Upon recieving the instance :et, give the prediction Yt = l/J(..p(8t):et). 

Update: For j := 1, ... , k, set 8t+l,i = 8t,i - fJ(yt,i - Yt ,i ):et . 

Note that (2) implies \7aD..l/J(a, a)) = l/J(a) -l/J(a), so this update indeed turns out to be 

the same as (1) when we recall that Ll/J(Yt, Yt) = D..l/J(Ot:et, at} where Yt = l/J(at). 

The update can be motivated by an optimization problem given in terms of t~e loss and 
distance. Consider updating an old parameter matrix 8 into a new matrix 8 based on 
a single input :e and desired output y. A natural goal would be to minimize the loss 
L l/J (y, l/J( ,p (8):e ) ). However, the algorithm must avoid losing too much of the information 
it has gained during the previous trials and stored in the form of the old parameter matrix 8 . 
We thus set as the algorithm's goal to minimize the sum D.."p(8, 8) + fJLl/J(Y' l/J(,p(8):e)) 
where fJ > 0 is a parameter regulating how fast the algorithm is willing to move its pa­
rameters. Under certain regularity assumptions, the update rule of the GA algorithm can 
be shown to approximately solve this minimization problem. For more discussion and ex­
amples in the special case of linear regression, see [KW97]. An interesting related idea is 
using all the previous examples in the update instead of just the last one. For work along 
these lines in the linear case see Vovk [Vov97] and Foster [Fos91]. 

4 RELATIVE LOSS BOUNDS 

Consider a sequence S := ((:el,yd, . .. ,(:el,Yl)) of training examples, and let 

Lossl/J(GA, S) = 2:!=1 Ll/J(Yt, Yt) be the loss incurred by the general additive algorithm 
on this sequence when it always uses its current weights Ot for making the tth prediction 

Yt· Similarly, let Lossl/J(O, S) = 2:!=1 Ll/J(Yt, l/J(O:ed) be the loss of a fixed predictor 
O. Basically, our goal is to show that if some 0 achieves a small loss, then the algorithm is 
not doing much worse, regardless of how the sequence S was generated. Making additional 
probabilistic assumptions allows such on-line loss bounds to be converted into more tradi­
tional results about generalization errors [KW97]. To give the bounds for Lossl/J(GA, S) 
in terms of Lossl/J(O, S) we need some additional parameters. The first one is the distance 

D....p(81 ,8) where 0 = "p(8) and 8 1 is the initial parameter matrix of the GA algorithm 
(which can be arbitrary). The second one is defined by 

bx,,,p = sup {:eT n..p(9):e 19 E Rn,:e EX} 

where X := {:el, ... ,:el} is the set of input vectors and n..p(9) is the Jacobian with 
(D,p(9))ij = 81Pi(9)/80j . The value bx,,p can be interpreted as the maximum norm of 
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any input vector in a norm defined by the parameterization function ..p. In Example 3 below 
we show how b x,..p can easily be evaluated when 1/J is a linear function or the softmax 
function. The third parameter ctP' defined as 

relates the matching loss function for the transfer function tP to the square loss. In Ex­
ample 4 we evaluate this constant for linear functions, the softmax function, and the one­
dimensional case. 

Example 3 Consider bounding the value :I: TDO'( 0):1: where 0' is the softmax func­
tion. As we saw in Example 2, this value is a variance of a random variable with the 
range {Xl, ... ,Xn }. Hence, we have bx,O' ~ maXzex(maxixi - minixd 2/4 ~ 
maXzex 11:l:11~ where 11:1:1100 = maXi IXil· 

If 1/J is a linear function with 1/J( 8) = A8 for a symmetrical positive definite A, we clearly 
have bx,..p ~ Amax max:l:ex :1: 2 where Amax is the largest eigenvalue of A. 0 

Example 4 For the softmax function 0' the matching loss function LO' is the relative en­
tropy (see Example 2), for which it is well known that LO'(y, y) 2: 2(y - y)2. Hence, we 
have ctP ~ 1/4. 

If tP is a linear function given by a symmetrical positive semidefinite matrix A, we see from 
Example 1 that C tP is the largest eigenvalue of A. 

Finally, in the special case k = 1, with ¢: R -7 R differentiable and strictly increasing, we 
can show ctP :::; Z if Z is a bound such that 0 < ¢'(z) :::; Z holds for all z. 0 

Assume now we are given constants b 2: bx ,1/J and C 2: ctP . Our first loss bound states that 
for any parameter matrix 8 we have 

when the learning rate is chosen as '1 = 1/(2bc). (Proofs are omitted from this extended 
abstract.) The advantage of this bound is that with a fixed learning rate it holds for any 
8, so we need no advance knowledge about a good 8. The drawback is the factor 2 in 
front of LosstP (..p (8), S), which suggests that asymptotically the algorithm might not ever 
achieve the performance of the best fixed predictor. A tighter bound can be achieved by 
more careful tuning. Thus, iven constants K 2: 0 and R > 0, if we choose the learning 
rate as '1 = ( (bcR)2 + KbcR - bcR)/(Kbc) (with '1 = 1/(2bc) if K = 0) we obtain 

for any 8 that satisfies Loss tP ( ..p (8) , S) :::; K and d..p (81 , 8) :::; R. This shows that if 
we restrict our comparison to parameter matrices within a given distance R of the initial 
matrix of the algorithm, and we have a reasonably good guess K as to the loss of the best 
fixed predictor within this distance, this knowledge allows the algorithm to asymptotically 
match the performance of this best fixed predictor. 
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