
Reinforcement Learning with
Hierarchies of Machines *

Ronald Parr and Stuart Russell
Computer Science Division, UC Berkeley, CA 94720

{parr,russell}@cs.berkeley.edu

Abstract

We present a new approach to reinforcement learning in which the poli­
cies considered by the learning process are constrained by hierarchies of
partially specified machines. This allows for the use of prior knowledge
to reduce the search space and provides a framework in which knowledge
can be transferred across problems and in which component solutions
can be recombined to solve larger and more complicated problems. Our
approach can be seen as providing a link between reinforcement learn­
ing and "behavior-based" or "teleo-reactive" approaches to control. We
present provably convergent algorithms for problem-solving and learn­
ing with hierarchical machines and demonstrate their effectiveness on a
problem with several thousand states.

1 Introduction
Optimal decision making in virtually all spheres of human activity is rendered intractable
by the complexity of the task environment. Generally speaking, the only way around in­
tractability has been to provide a hierarchical organization for complex activities. Although
it can yield suboptimal policies, top-down hierarchical control often reduces the complexity
of decision making from exponential to linear in the size of the problem. For example, hier­
archical task network (HTN) planners can generate solutions containing tens of thousands
of steps [5], whereas "fiat" planners can manage only tens of steps.

HTN planners are successful because they use a plan library that describes the decomposition
of high-level activities into lower-level activities. This paper describes an approach to
learning and decision making in uncertain environments (Markov decision processes) that
uses a roughly analogous form of prior knowledge. We use hierarchical abstract machines
(HAMs), which impose constraints on the policies considered by our learning algorithms.
HAMs consist of nondeterministic finite state machines whose transitions may invoke
lower-level machines. Nondeterminism is represented by choice states where the optimal
action is yet to be decided or learned. The language allows a variety of prior constraints
to be expressed, ranging from no constraint all the way to a fully specified solution. One

*This research was supported in part by ARO under the MURI program "Integrated Approach to
Intelligent Systems," grant number DAAH04-96-1-0341.

1044 R. Parr and S. Russell

0_1.

(a) (b) (c)

Figure 1: (a) An MOP with ~ 3600 states. The initial state is in the top left. (b) Close­
up showing a typical obstacle. (c) Nondetenninistic finite-state controller for negotiating
obstacles.

useful intennediate point is the specification of just the general organization of behavior
into a layered hierarchy, leaving it up to the learning algorithm to discover exactly which
lower-level activities should be invoked by higher levels at each point.

The paper begins with a brief review of Markov decision processes (MOPs) and a descrip­
tion of hierarchical abstract machines. We then present, in abbreviated fonn, the following
results: 1) Given any HAM and any MOP, there exists a new MOP such that the optimal
policy in the new MOP is optimal in the original MOP among those policies that satisfy the
constraints specified by the HAM. This means that even with complex machine specifica­
tions we can still apply standard decision-making and learning methods. 2) An algorithm
exists that detennines this optimal policy, given an MOP and a HAM. 3) On an illustrative
problem with 3600 states, this algorithm yields dramatic perfonnance improvements over
standard algorithms applied to the original MOP. 4) A reinforcement learning algorithm
exists that converges to the optimal policy, subject to the HAM constraints, with no need
to construct explicitly a new MOP. 5) On the sample problem, this algorithm learns dra­
matically faster than standard RL algorithms. We conclude with a discussion of related
approaches and ongoing work.

2 Markov Decision Processes
We assume the reader is familiar with the basic concepts of MOPs. To review, an MOP is
a 4-tuple, (5, A, T, R) where 5 is a set of states, A is a set of actions, T is a transition
model mapping 5 x A x 5 into probabilities in [0, I J, and R is a reward function mapping
5 x A x 5 into real-valued rewards. Algorithms for solving MOPs can return a policy 7r that
maps from 5 to A, a real-valued value function V on states, or a real-valued Q-function on
state-action pairs. In this paper, we focus on infinite-horizon MOPs with a discount factor
/3. The aim is to find an optimal policy 7r* (or, equivalently, V* or Q*) that maximizes the
expected discounted total reward of the agent.

Throughout the paper, we will use as an example the MOP shown in Figure l(a). Here A
contains four primitive actions (up, down, left, right). The transition model, T, specifies that
each action succeeds 80% of time, while 20% of the time the agent moves in an unintended
perpendicular direction. The agent begins in a start state in the upper left corner. A reward
of 5.0 is given for reaching the goal state and the discount factor /3 is 0.999.

3 Hierarchical abstract machines
A HAM is a program which, when executed by an agent in an environment, constrains the
actions that the agent can take in each state. For example, a very simple machine might
dictate, "repeatedly choose right or down," which would eliminate from consideration all
policies that go up or left. HAMs extend this simple idea of constraining policies by
providing a hierarchical means of expressing constraints at varying levels of detail and

Reinforcement Learning with Hierarchies of Machines 1045

specificity. Machines for HAMs are defined by a set of states, a transition function, and a
start function that detennines the initial state of the machine. Machine states are of four
types: Action states execute an action in the environment. Call states execute another
machine as a subroutine. Choice states nondetenninistically select a next machine state.
Stop states halt execution of the machine and return control to the previous call state.

The transition function detennines the next machine state after an action Or call state
as a stochastic function of the current machine state and some features of the resulting
environment state. Machines will typically use a partial description of the environment to
detennine the next state. Although machines can function in partially observable domains,
for the purposes of this paper we make the standard assumption that the agent has access to
a complete description as well.

A HAM is defined by an initial machine in which execution begins and the closure of all
machines reachable from the initial machine. Figure I(c) shows a simplified version of
one element of the HAM we used for the MDP in Figure I. This element is used for
traversing a hallway while negotiating obstacles of the kind shown in Figure 1 (b). It runs
until the end of the hallway or an intersection is reached. When it encounters an obstacle, a
choice point is created to choose between two possible next machine states. One calls the
backoff machine to back away from the obstacle and then move forward until the next one.
The other calls the follow-wall machine to try to get around the obstacle. The follow-wall
machine is very simple and will be tricked by obstacles that are concave in the direction of
intended movement; the backoff machine, on the other hand, can move around any obstacle
in this world but could waste time backing away from some obstacles unnecessarily and
should be used sparingly.

Our complete "navigation HAM" involves a three-level hierarchy, somewhat reminiscent
of a Brooks-style architecture but with hard-wired decisions replaced by choice states. The
top level of the hierarchy is basically just a choice state for choosing a hallway navigation
direction from the four coordinate directions. This machine has control initially and regains
control at intersections or corners. The second level of the hierarchy contains four machines
for moving along hallways, one for each direction. Each machine at this level has a choice
state with four basic strategies for handling obstacles. Two back away from obstacles
and two attempt to follow walls to get around obstacles. The third level of the hierarchy
implements these strategies using the primitive actions.

The transition function for this HAM assumes that an agent executing the HAM has access
to a short-range, low-directed sonar that detects obstacles in any of the four axis-parallel
adjacent squares and a long-range, high-directed sonar that detects larger objects such as
the intersections and the ends of hallways. The HAM uses these partial state descriptions
to identify feasible choices. For example, the machine to traverse a hallway northwards
would not be called from the start state because the high-directed sonar would detect a wall
to the north.

Our navigation HAM represents an abstract plan to move about the environment by re­
peatedly selecting a direction and pursuing this direction until an intersection is reached.
Each machine for navigating in the chosen direction represents an abstract plan for moving
in a particular direction while avoiding obstacles. The next section defines how a HAM
interacts with a specific MDP and how to find an optimal policy that respects the HAM
constraints.

4 Defining and solving the HAM-induced MDP
A policy for a model, M, that is HAM-consistent with HAM H is a scheme for making
choices whenever an agent executing H in M, enters a choice state. To find the optimal
HAM-consistent policy we apply H to M to yield an induced MDP, HoM. A somewhat
simplified description of the construction of HoM is as follows: 1) The set of states in
HoM is the cross-product of the states of H with the states of M. 2) For each state in
HoM where the machine component is an action state, the model and machine transition

1046

20 ~
1

I ~ :

10

WillloutHAM -
WittlHAM

r--

o ____ ~ ________________ ~~.

o SOO 1(0) lSOO 2:C)X) l500 lOOO 3SOO .4QOO ..soD ~
RuntiJne(.ca::ondI'

(a)

R. Parr and S. Russell

(b)

WllItoIIlHAM -­
WtthHAM --

Figure 2: Experimental results showing policy value (at the initial state) as a function of
runtime on the domain shown in Figure 1. (a) Policy iteration with and without the HAM.
(b) Q-learning with and without the HAM (averaged over 10 runs).

functions are combined. 3) For each state where the machine component is a choice state,
actions that change only the machine component of the state are introduced. 4) The reward
is taken from M for primitive actions, otherwise it is zero. With this construction, we have
the following (proof omitted):

Lemma 1 For any Markov decision process M and any! HAM H, the induced process
HoM is a Markov decision process.

Lemma 2 If 7r is an optimal policy for HoM, then the primitive actions specified by 7r

constitute the optimal policy for M that is HAM-consistent with H.

Of course, HoM may be quite large. Fortunately, there are two things that will make
the problem much easier in most cases. The first is that not all pairs of HAM states and
environment states will be possible, i.e., reachable from an initial state. The second is that
the actual complexity of the induced MOP is determined by the number of choice points,
i.e., states of HoM in which the HAM component is a choice state. This leads to the
following:

Theorem 1 For any MOP, M, and HAM, H, let C be the set of choice points in HoM.
There exists a decision process, reduce(H 0 M), with states C such that the optimal policy
for reduce(H 0 M) corresponds to the optimal policy for M that is HAM-consistent with
H .

Proof sketch We begin by applying Lemma 1 and then observing that in states of HoM
where the HAM component is not a choice state, only one action is permitted. These
states can be removed to produce an equivalent Semi-Markov decision process (SMOP).
(SMOPs are a generalization of Markov decision processes that permit different discount
rates for different transitions.) The optimal policy for this SMOP will be the same as the
optimal policy for HoM and by Lemma 2, this will be the optimal policy for M that is
HAM-consistent with H. 0

This theorem formally establishes the mechanism by which the constraints embodied in a
HAM can be used to simplify an MDP. As an example of the power of this theorem, and
to demonstrate that this transformation can be done efficiently, we applied our navigation
HAM to the problem described in the previous section. Figure 2(a) shows the results of
applying policy iteration to the original model and to the transformed model. Even when
we add in the cost of transformation (which, with our rather underoptimized code, takes

ITo preserve the Markov property, we require that if a machine has more than one possible caller
in the hierarchy, that each appearance is treated as a distinct machine. This is equivalent to requiring
that the call graph for the HAM is a tree. It follows from this that circular calling sequences are also
forbidden.

Reinforcement Learning with Hierarchies of Machines 1047

866 seconds), the HAM method produces a good policy in less than a quarter of the time
required to find the optimal policy in the original model. The actual solution time is 185
seconds versus 4544 seconds.

An important property of the HAM approach is that model transformation produces an
MDP that is an accurate model of the application of the HAM to the original MDP. Unlike
typical approximation methods for MDPs, the HAM method can give strict performance
guarantees. The solution to the transformed model Teduce(H 0 M) is the optimal solution
from within a well-defined class of policies and the value assigned to this solution is the
true expected value of applying the concrete HAM policy to the original MDP.

5 Reinforcement learning with HAMs
HAMs can be of even greater advantage in a reinforcement learning context, where the
effort required to obtain a solution typically scales very badly with the size of the problem.
HAM contraints can focus exploration of the state space, reducing the "blind search" phase
that reinforcement learning agents must endure while learning about a new environment.
Learning will also be fasterfor the same reason policy iteration is faster in the HAM-induced
model; the agent is effectively operating in a reduced state space.

We now introduce a variation of Q-learning called HAMQ-1earning that learns directly
in the reduced state space without performing the model transformation described in the
previous section. This is significant because the the environment model is not usually
known a priori in reinforcement learning contexts.

A HAMQ-learning agent keeps track of the following quantities: t, the current environment
state; n, the current machine state; Se and me, the environment state and machine state at
the previous choice point; a, the choice made at the previous choice point; and T e and 13e,
the total accumulated reward and discount since the previous choice point. It also maintains
an extended Q-table, Q([s, m], a), which is indexed by an environment-state/machine-state
pair and by an action taken at a choice point.

For every environment transition from state s to state t with observed reward T and discount
13, the HAMQ-Iearning agent updates: Te ~ Te + 13eT and 13e ~ 13l3e. For each transition
to a choice point, the agent does

Q([se, me], a) ~ Q([se, mc], a) + a[Te + 13e V([t, n]) - Q([Se, mc], a)],

and then Te ~ 0, 13e ~ 1.

Theorem 2 For any finite-state MDP, M, and any HAM, H, HAMQ-Iearning will converge
to the optimal choice for every choice point in Teduce(H 0 M) with probability l.

Proof sketch We note that the expected reinforcement signal in HAMQ-Iearning is the
same as the expected reinforcement signal that would be received if the agent were acting
directly in the transformed model of Theorem 1 above. Thus, Theorem 1 of [11] can be
applied to prove the convergence of the HAMQ-learning agent, provided that we enforce
suitable constraints on the exploration strategy and the update parameter decay rate. 0

We ran some experiments to measure the performance of HAMQ-learning on our sample
problem. Exploration was achieved by selecting actions according to the Boltzman distri­
bution with a temperature parameter for each state. We also used an inverse decay for the
update parameter a. Figure 2(b) compares the learning curves for Q-Iearning and HAMQ­
learning. HAMQ-Iearning appears to learn much faster: Q-Iearning required 9,000,000
iterations to reach the level achieved by HAMQ-learning after 270,000 iterations. Even
after 20,000,000 iterations, Q-Iearning did not do as well as HAMQ-learning.2

2Speedup techniques such as eligibility traces could be applied to get better Q-Ieaming results;
such methods apply equally well to HAMQ-Iearning.

1048 R. Parr and S. Russell

6 Related work
State aggregation (see, e.g., [18] and [7]) clusters "similar" states together and assigns them
the same value, effectively reducing the state space. This is orthogonal to our approach
and could be combined with HAMs. However, aggregation should be used with caution
as it treats distinct states as a single state and can violate the Markov property leading to
the loss of performance guarantees and oscillation or divergence in reinforcement learning.
Moreover, state aggregation may be hard to apply effectively in many cases.

Dean and Lin [8] and Bertsekas and Tsitsiklis [2], showed that some MDPs are loosely
coupled and hence amenable to divide-and-conquer algorithms. A machine-like language
was used in [13] to partition an MDP into decoupled subproblems. In problems that are
amenable to decoupling, this could approaches could be used in combinated with HAMs.

Dayan and Hinton [6] have proposedJeudal RL which specifies an explicit subgoal structure,
with fixed values for each sub goal achieved, in order to achieve a hierarchical decomposition
of the state space. Dietterich extends and generalizes this approach in [9]. Singh has
investigated a number of approaches to subgoal based decomposition in reinforcement
learning (e.g. [17] and [16]). Subgoals seem natural in some domains, but they may
require a significant amount of outside knowledge about the domain and establishing the
relationship between the value of subgoals with respect to the overall problem can be
difficult.

Bradtke and Duff [3] proposed an RL algorithm for SMDPs. Sutton [19] proposes temporal
abstractions, which concatenate sequences of state transitions together to permit reasoning
about temporally extended events, and which can thereby form a behavioral hierarchy as
in [14] and [15]. Lin's somewhat informal scheme [12] also allows agents to treat entire
policies as single actions. These approaches can be emcompassed within our framework
by encoding the events or behaviors as machines.

The design of hierarchically organized, "layered" controllers was popularized by Brooks [4].
His designs use a somewhat different means of passing control, but our analysis and theorems
apply equally well to his machine description language. The "teleo-reactive" agent designs
of Benson and Nilsson [I] are even closer to our HAM language. Both of these approaches
assume that the agent is completely specified, albeit self-modifiable. The idea of partial
behavior descriptions can be traced at least to Hsu's partial programs [10], which were
used with a deterministic logical planner.

7 Conclusions and future work
We have presented HAMs as a principled means of constraining the set of policies that are
considered for a Markov decision process and we have demonstrated the efficacy of this
approach in a simple example for both policy iteration and reinforcement learning. Our
results show very significant speedup for decision-making and learning-but of course, this
reflects the provision of knowledge in the form of the HAM. The HAM language provides
a very general method of transferring knowledge to an agent and we only have scratched
the surface of what can be done with this approach.

We believe that if desired, subgoal information can be incorporated into the HAM structure,
unifying subgoal-based approaches with the HAM approach. Moreover, the HAM structure
provides a natural decomposition of the HAM-induced model, making it amenable to the
divide-and-conquer approaches of [8] and [2].

There are opportunities for generalization across all levels of the HAM paradigm. Value
function approximation can be used for the HAM induced model and inductive learning
methods can be used to produce HAMs or to generalize their effects upon different regions
of the state space. Gradient-following methods also can be used to adjust the transition
probabilities of a stochastic HAM.

HAMs also lend themselves naturally to partially observable domains. They can be applied
directly when the choice points induced by the HAM are states where no confusion about

Reinforcement Learning with Hierarchies of Machines 1049

the true state of the environment is possible. The application of HAMs to more general
partially observable domains is more complicated and is a topic of ongoing research. We
also believe that the HAM approach can be extended to cover the average-reward optimality
criterion.

We expect that successful pursuit of these lines of research will provide a formal basis for
understanding and unifying several seemingly disparate approaches to control, including
behavior-based methods. It should also enable the use of the MDP framework in real-world
applications of much greater complexity than hitherto attacked, much as HTN planning has
extended the reach of classical planning methods.

References
[1] S. Benson and N. Nilsson. Reacting, planning and learning in an autonomous agent. In

K. Furukawa, D. Michie, and S. Muggleton, editors, Machine Intelligence 14. Oxford University
Press, Oxford, 1995.

[2] D. C. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical Metlwds.
Prentice-Hall, Englewood Cliffs, New Jersey, 1989.

[3] S. J. Bradtke and M. O. Duff. Reinforcement learning methods for continuous-time Markov
decision problems. In Advances in Neurallnfonnation Processing Systems 7: Proc. of the 1994
Conference, Denver, Colorado, December 1995. MIT Press.

[4] R. A. Brooks. A robust layered control system for a mobile robot. IEEE Journal of Robotics
and Automation, 2, 1986.

[5] K. W. Currie and A. Tate. O-Plan: the Open Planning Architecture. Artificial Intelligence,
52(1), November 1991.

[6] P. Dayan and G. E. Hinton. Feudal reinforcement learning. In Stephen Jose Hanson, Jack D.
Cowan, and C. Lee Giles, editors, Neural Information Processing Systems 5, San Mateo,
California, 1993. Morgan Kaufman.

[7] T. Dean, R. Givan, and S. Leach. Model reduction techniques for computing approximately
optimal solutions for markov decision processes. In Proc. of the Thirteenth Conference on Un­
certainty in Artificial Intelligence , Providence, Rhode Island, August 1997. Morgan Kaufmann.

[8] T. Dean and S.-H. Lin. Decomposition techniques for planning in stochastic domains. In Proc.
of the Fourteenth Int. Joint Conference on Artificial Intelligence, Montreal, Canada, August
1995. Morgan Kaufmann.

[9] Thomas G. Dietterich. Hierarchical reinforcement learning with the MAXQ value function
decomposition. Technical report, Department of Computer Science, Oregon State University,
Corvallis, Oregon, 1997.

[10] Y.-J . Hsu. Synthesizing efficient agents from partial programs. In Metlwdologiesfor Intelligent
Systems: 6th Int. Symposium, ISMIS '91, Proc., Charlotte, North Carolina, October 1991.
Springer-Verlag.

[11] T. Jaakkola, M.l. Jordan, and S.P. Singh. On the convergence of stochastic iterative dynamic
programming algorithms. Neural Computation, 6(6), 1994.

[12] L.-J. Lin. Reinforcement Learning for Robots Using Neural Networks. PhD thesis, Computer
Science Department, Carnegie-Mellon University, Pittsburgh, Pennsylvania, 1993.

[13] Shieu-Hong Lin. Exploiting Structure for Planning and Control. PhD thesis, Computer Science
Department, Brown University, Providence, Rhode Island, 1997.

[14] A. McGovern, R. S. Sutton, and A. H. Fagg. Roles of macro-actions in accelerating reinforcement
learning. In 1997 Grace Hopper Celebration of Women in Computing, 1997.

[15] D. Precup and R. S. Sutton. Multi-time models fortemporally abstract planning. In This Volume .
[16] S. P. Singh. Scaling reinforcement learning algorithms by learning variable temporal resolution

models. In Proceedings of the Ninth International Conference on Machine Learning, Aberdeen,
July 1992. Morgan Kaufmann.

[17] S. P. Singh. Transfer of learning by composing solutions of elemental sequential tasks. Machine
Learning, 8(3), May 1992.

[18] S. P. Singh, T. Jaakola, and M. I. Jordan. Reinforcement learning with soft state aggregation. In
G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, Neural Information Processing Systems 7,
Cambridge, Massachusetts, 1995. MIT Press.

[19] R. S. Sutton. Temporal abstraction in reinforcement learning. In Proc. of the Twelfth Int.
Conference on Machine Learning, Tahoe City, CA, July 1995. Morgan Kaufmann.

