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Abstract 

One approach to invariant object recognition employs a recurrent neu­
ral network as an associative memory. In the standard depiction of the 
network's state space, memories of objects are stored as attractive fixed 
points of the dynamics. I argue for a modification of this picture: if an 
object has a continuous family of instantiations, it should be represented 
by a continuous attractor. This idea is illustrated with a network that 
learns to complete patterns. To perform the task of filling in missing in­
formation, the network develops a continuous attractor that models the 
manifold from which the patterns are drawn. From a statistical view­
point, the pattern completion task allows a formulation of unsupervised 
learning in terms of regression rather than density estimation. 

A classic approach to invariant object recognition is to use a recurrent neural net­
work as an associative memory[l]. In spite of the intuitive appeal and biological 
plausibility of this approach, it has largely been abandoned in practical applications. 
This paper introduces two new concepts that could help resurrect it: object repre­
sentation by continuous attractors, and learning attractors by pattern completion. 

In most models of associative memory, memories are stored as attractive fixed points 
at discrete locations in state space[l]. Discrete attractors may not be appropriate for 
patterns with continuous variability, like the images of a three-dimensional object 
from different viewpoints. When the instantiations of an object lie on a continuous 
pattern manifold, it is more appropriate to represent objects by attractive manifolds 
of fixed points, or continuous attractors. 

To make this idea practical, it is important to find methods for learning attractors 
from examples. A naive method is to train the network to retain examples in short­
term memory. This method is deficient because it does not prevent the network 
from storing spurious fixed points that are unrelated to the examples. A superior 
method is to train the network to restore examples that have been corrupted, so 
that it learns to complete patterns by filling in missing information. 
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Figure 1: Representing objects by dynamical attractors. (a) Discrete attractors. 
(b) Continuous attractors. 

Learning by pattern completion can be understood from both dynamical and sta­
tistical perspectives. Since the completion task requires a large basin of attraction 
around each memory, spurious fixed points are suppressed. The completion task 
also leads to a formulation of unsupervised learning as the regression problem of 
estimating functional dependences between variables in the sensory input. 

Density estimation, rather than regression, is the dominant formulation of unsuper­
vised learning in stochastic neural networks like the Boltzmann machine[2] . Density 
estimation has the virtue of suppressing spurious fixed points automatically, but it 
also has the serious drawback of being intractable for many network architectures. 
Regression is a more tractable, but nonetheless powerful, alternative to density 
estimation. 

In a number of recent neurobiological models, continuous attractors have been used 
to represent continuous quantities like eye position-[3], direction of reaching[4], head 
direction[5], and orientation of a visual stimulus[6]. Along with these models, the 
present work is part of a new paradigm for neural computation based on continuous 
attractors. 

1 DISCRETE VERSUS CONTINUOUS ATTRACTORS 

Figure 1 depicts two ways of representing objects as attractors of a recurrent neural 
network dynamics. The standard way is to represent each object by an attractive 
fixed point[l], as in Figure 1a. Recall of a memory is triggered by a sensory input, 
which sets the initial conditions. The network dynamics converges to a fixed point, 
thus retrieving a memory. If different instantiations of one object lie in the same 
basin of attraction, they all trigger retrieval of the same memory, resulting in the 
many-to-one map required for invariant recognition. 

In Figure 1b, each object is represented by a continuous manifold of fixed points. 
A one-dimensional manifold is shown, but generally the attractor should be mul­
tidimensional, and is parametrized by the instantiation or pose parameters of the 
object . For example, in visual object recognition, the coordinates would include the 
viewpoint from which the object is seen. 

The reader should be cautioned that the term "continuous attractor" is an idealiza­
tion and should not be taken too literally. In real networks, a continuous attractor 
is only approximated by a manifold in state space along which drift is very slow. 
This is illustrated by a simple example, a descent dynamics on a trough-shaped 
energy landscape[3]. If the bottom of the trough is perfectly level, it is a line of 
fixed points and an ideal continuous attract or of the dynamics. However, any slight 
imperfections cause slow drift along the line. This sort of approximate continuous 
attract or is what is found in real networks, including those trained by the learning 
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Figure 2: (a) Recurrent network. (b) Feedforward autoencoder. 

algorithms to be discussed below. 

2 DYNAMICS OF MEMORY RETRIEVAL 

The preceding discussion has motivated the idea of representing pattern manifolds 
by continuous attractors. This idea will be further developed with the simple net­
work shown in Figure 2a, which consists of a visible layer Xl E Rnl and a hidden 
layer X2 E Rn2. The architecture is recurrent, containing both bottom-up con­
nections (the n2 x nl matrix W2d and top-down connections (the nl x n2 matrix 
WI2). The vectors bl and b2 represent the biases ofthe neurons. The neurons have 
a rectification nonlinearity [x]+ = max{x, O}, which acts on vectors component by 
component. 

There are many variants of recurrent network dynamics: a convenient choice is the 
following discrete-time version, in which updates of the hidden and visible layers 
alternate in time. After the visible layer is initialized with the input vector Xl (0), 
the dynamics evolves as 

X2(t) = [b2 + W2IXI(t -1)]+ , 
Xl (t) = [bl + W12X2(t)]+ . 

(1) 

If memories are stored as attractors, iteration of this dynamics can be regarded as 
memory retrieval. 

Activity circulates around the feedback loop between the two layers. One iteration 
of this loop is the map Xl(t - 1) ~ X2(t) ~ Xl(t). This single iteration is equiv­
alent to the feedforward architecture of Figure 2b. In the case where the hidden 
layer is smaller than the visible layers, this architecture is known as an auto en­
coder network[7]. Therefore the recurrent network dynamics (1) is equivalent to 
repeated iterations of the feedforward autoencoder. This is just the standard trick 
of unfolding the dynamics of a recurrent network in time, to yield an equivalent 
feedforward network with many layers[7]. Because of the close relationship between 
the recurrent network of Figure 2a and the autoencoder of Figure 2b, it should not 
be surprising that learning algorithms for these two networks are also related, as 
will be explained below. 

3 LEARNING TO RETAIN PATTERNS 

Little trace of an arbitrary input vector Xl (0) remains after a few time steps of the 
dynamics (1). However, the network can retain some input vectors in short-term 
memory as "reverberating" patterns of activity. These correspond to fixed points of 
the dynamics (1); they are patterns that do not change as activity circulates around 
the feedback loop. 
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This suggests a formulation of learning as the optimization of the network's ability to 
retain examples in short-term memory. Then a suitable cost function is the squared 
difference IXI (T) - Xl (0)12 between the example pattern Xl (0) and the network's 
short-term memory Xl (T) of it after T time steps. Gradient descent on this cost 
function can be done via backpropagation through time[7]. 

If the network is trained with patterns drawn from a continuous family, then it can 
learn to perform the short-term memory task oy developing a continuous attractor 
that lies near the examples it is trained on. When the hidden layer is smaller than 
the visible layer, the dimensionality of the attractor is limited by the size of the 
hidden layer. 

For the case of a single time step (T = 1), training the recurrent network of Figure 
2a to retain patterns is equivalent to training the autoencoder of Figure 2b by 
minimizing the squared difference between its input and output layers, averaged 
over the examples[8]. From the information theoretic perspective, the small hidden 
layer in Figure 2b acts as a bottleneck between the input and output layers, forcing 
the autoencoder to learn an efficient encoding of the input. 

For the special case of a linear network, the nature of the learned encoding is 
understood completely. Then the input and output vectors are related by a simple 
matrix multiplication. The rank of the matrix is equal to the number of hidden 
units. The average distortion is minimized when this matrix becomes a projection 
operator onto the subspace spanned by the principal components of the examples[9]. 

From the dynamical perspective, the principal subspace is a continuous attractor 
of the dynamics (1). The linear network dynamics converges to this attractor in 
a single iteration, starting from any initial condition. Therefore we can interpret 
principal component analysis and its variants as methods of learning continuous 
attractors[lO]. 

4 LEARNING TO COMPLETE PATTERNS 

Learning to retain patterns in short-term memory only works properly for architec­
tures with a small hidden layer. The problem with a large hidden layer is evident 
when the hidden and visible layers are the same size, and the neurons are linear. 
Then the cost function for learning can be minimized by setting the weight matrices 
equal to the identity, W21 = Wl2 = I. For this trivial minimum, every input vector 
is a fixed point of the recurrent network (Figure 2a), and the equivalent feedforward 
network (Figure 2b) exactly realizes the identity map. Clearly these networks have 
not learned anything. 

Therefore in the case of a large hidden layer, learning to retain patterns is inad­
equate. Without the bottleneck in the architecture, there is no pressure on the 
feedforward network to learn an efficient encoding. Without constraints on the di­
mension of the attractor, the recurrent network develops spurious fixed points that 
have nothing to do with the examples. 

These problems can be solved by a different formulation of learning based on the 
task of pattern completion. In the completion task of Figure 3a, the network is 
initialized with a corrupted version of an example. Learning is done by minimizing 
the completion error, which is the squared difference IXI (T) - dl 2 between the uncor­
rupted pattern d and the final visible vector Xl (T). Gradient descent on completion 
error can be done with backpropagation through time[ll]. 

This new formulation of learning eliminates the trivial identity map solution men-
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Figure 3: (a) Pattern retention versus completion. (b) Dynamics of pattern com­
pletion. 

(b) 

5x5 receptive fields 

Figure 4: ( a) Locally connected architecture. (b) Receptive fields of hidden neurons. 

tioned above: while the identity network can retain any example, it cannot restore 
corrupted examples to their pristine form. The completion task forces the network 
to enlarge the basins of attraction of the stored memories, which suppresses spuri­
ous fixed points. It also forces the network to learn associations between variables 
in the sensory input. 

5 LOCALLY CONNECTED ARCHITECTURE 

Experiments were conducted with images of handwritten digits from the USPS 
database described in [12]. The example images were 16 x 16, with a gray scale 
ranging from a to 1. The network was trained on a specific digit class, with the 
goal of learning a single pattern manifold. Both the network architecture and the 
nature of the completion task were chosen to suit the topographic structure present 
in visual images. 

The network architecture was given a topographic organization by constraining the 
synaptic connectivity to be local, as shown in Figure 4a. Both the visible and hidden 
layers of the network were 16 x 16. The visible layer represented an image, while 
the hidden layer was a topographic feature map. Each neuron had 5 x 5 receptive 
and projective fields, except for neurons near the edges, which had more restricted 
connectivity. 

In the pattern completion task, example images were corrupted by zeroing the 
pixels inside a 9 x 9 patch chosen at a random location, as shown in Figure 3a. 
The location of the patch was randomized for each presentation of an example. 
The size of the patch was a substantial fraction of the 16 x 16 image, and much 
larger than the 5 x 5 receptive field size. This method of corrupting the examples 
gave the completion task a topographic nature, because it involved a set of spatially 
contiguous pixels. This topographic nature would have been lacking if the examples 
had been corrupted by, for example, the addition of spatially uncorrelated noise. 

Figure 3b illustrates the dynamics of pattern completion performed by a network 
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trained on examples of the digit class "two." The network is initialized with a 
corrupted example of a "two." After the first itex:ation of the dynamics, the image 
is partially restored. The second iteration leads to superior restoration, with further 
sharpening of the image. The "filling in" phenomenon is also evident in the hidden 
layer. 

The network was first trained on a retrieval dynamics of one iteration. The resulting 
biases and synaptic weights were then used as initial conditions for training on a 
retrieval dynamics of two iterations. The hidden layer developed into a topographic 
feature map suitable for representing images of the digit "two." Figure 4b depicts 
the bottom-up receptive fields of the 256 hidden neurons. The top-down projective 
fields of these neurons were similar, but are not shown. 

This feature map is distinct from others[13) because of its use of top-down and 
bottom-up connections in a feedback loop. The bottom-up connections analyze 
images into their constituent features, while the top-down connections synthesize 
images by composing features. The features in the top-down connections can be 
regarded as a "vocabulary" for synthesis of images. Since not all combinations of 
features are proper patterns, there must be some "grammatical" constraints on their 
combination. The network's ability to complete patterns suggests that some of these 
constraints are embedded in the dynamical equations of the network. Therefore the 
relaxation dynamics (1) can be regarded as a process of massively parallel constraint 
satisfaction. 

6 CONCLUSION 

I have argued that continuous attractors are a natural representation for pattern 
manifolds. One method of learning attractors is to train the network to retain 
examples in short-term memory. This method is equivalent to autoencoder learning, 
and does not work if the number of hidden units is large. A better method is to train 
the network to complete patterns. For a locally connected network, this method 
was demonstrated to learn a topographic feature map. The trained network is able 
to complete patterns, indicating that syntactic constraints on the combination of 
features are embedded in the network dynamics. 

Empirical evidence that the network has indeed learned a continuous attractor is 
obtained by local linearization of the network (1). The linearized dynamics has 
many eigenvalues close to unity, indicating the existence of an approximate con­
tinuous attractor. Learning with an increased number of iterations in the retrieval 
dynamics should improve the quality of the approximation. 

There is only one aspect of the learning algorithm that is specifically tailored for 
continuous attractors. This aspect is the limitation of the retrieval dynamics (1) 
to a few iterations, rather than iterating it all the way to a true fixed point. As 
mentioned earlier, a continuous attractor is only an idealization; in a real network 
it does not consist of true fixed points, but is just a manifold to which relaxation is 
fast and along which drift is slow. Adjusting the shape of this manifold is the goal 
of learning; the exact locations of the true fixed points are not relevant. 

The use of a fast retrieval dynamics removes one long-standing objection to attractor 
neural networks, which is that true convergence to a fixed point takes too long. If all 
that is desired is fast relaxation to an approximate continuous attractor, attractor 
neural networks are not much slower than feedforward networks. 

In the experiments discussed here, learning was done with backpropagation through 
time. Contrastive Hebbian learning[14] is a simpler alternative. Part of the image 
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is held clamped, the missing values are filled in by convergence to a fixed point, 
and an anti-Hebbian update is made. Then the missing values are clamped at their 
correct values, the network converges to a new fixed point, and a Hebbian update 
is made. This procedure has the disadvantage of requiring true convergence to a 
fixed point, which can take many iterations. It also requires symmetric connections, 
which may be a representational handicap. 

This paper addressed only the learning of a single attractor to represent a single 
pattern manifold. The problem of learning multiple attractors to represent mUltiple 
pattern classes will be discussed elsewhere, along with the extension to network 
architectures with many layers. 
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