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ABSTRACT 
The paper is developed in two parts where we discuss a new approach 
to self-organization in a single-layer linear feed-forward network. First, 
two novel algorithms for self-organization are derived from a two-layer 
linear hetero-associative network performing a one-of-m classification, 
and trained with the constrained least-mean-squared classification error 
criterion. Second, two adaptive algorithms are derived from these self
organizing procedures to compute the principal generalized 
eigenvectors of two correlation matrices from two sequences of 
random vectors. These novel adaptive algorithms can be implemented 
in a single-layer linear feed-forward network. We give a rigorous 
convergence analysis of the adaptive algorithms by using stochastic 
approximation theory. As an example, we consider a problem of online 
signal detection in digital mobile communications. 

1. INTRODUCTION 

We study the problems of hetero-associative trammg, linear discriminant analysis, 
generalized eigen-decomposition and their theoretical connections. The paper is divided 
into two parts. In the first part, we study the relations between hetero-associative training 
with a linear feed-forward network, and feature extraction by the linear discriminant 
analysis (LOA) criterion. Here we derive two novel algorithms that unify the two 
problems. In the second part, we generalize the self-organizing algorithm for LOA to 
obtain adaptive algorithms for generalized eigen-decomposition, for which we provide a 
rigorous proof of convergence by using stochastic approximation theory. 

1.1 HETERO-ASSOCIATION AND LINEAR DISCRIMINANT ANALYSIS 

In this discussion, we consider a special case of hetero-association that deals with the 
classification problems. Here the inputs belong to a finite m-set of pattern classes, and the 
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outputs indicate the classes to which the inputs belong. Usually, the ith standard basis 
vector ei is chosen to indicate that a particular input vector x belongs to class i. 

The LDA problem, on the other hand, aims at projecting a multi-class data in a lower 
dimensional subspace such that it is grouped into well-separated clusters for the m 

classes. The method is based upon a set of scatter matrices commonly known as the 
mixture scatter Sm and between class scatter Sb (Fukunaga, 1990). These matrices are 
used to formulate criteria such as tr(Sm-ISb) and det(Sb)1 det(Sm) which yield a linear 
transform <1> that satisfy the generalized eigenvector problem Sb<1>=Sm<1>A, where A is the 
generalized eigenvalue matrix. If Sm is positive definite, we obtain a <1> such that <1>TSm<1> 
=1 and <1>TSb<1>=A. Furthermore, the significance of each eigenvector (for class 
separability) is determined by the corresponding generalized eigenvalue. 

A relation between hetero-association and LDA was demonstrated by Gallinari et al. 
(1991). Their work made explicit that for a linear multi-layer perceptron performing a 
one-from-m classification that minimized the total mean square error (MSE) at the 
network output, also maximized a criterion det(Sb)/det(Sm) for LDA at the final hidden 
layer. This study was generalized by Webb and Lowe (1990) by using a nonlinear 
transform from the input data to the final hidden units, and a linear transform in the final 
layer. This has been further generalized by Chatterjee and Roychowdhury (1996) by 
including the Bayes cost for misclassification into the criteria tr(Sm -ISb). 

Although the above studies offer useful insights into the relations between hetero
association and LDA, they do not suggest an algorithm to extract the optimal LDA 
transform <1>. Since the criteria for class separability are insensitive to multiplication by 
nonsingular matrices, the above studies suggest that any training procedure that 
minimizes the MSE at the network output will yield a nonsingular transformation of <1>; 
i.e., we obtain Q<1> where Q is a nonsingular matrix. Since Q<1> does not satisfy the 
generalized eigenvector problem Sb<1>=Sm<1>A for any arbitrary nonsingular matrix Q, we 
need to determine an algorithm that will yield Q=I. 

In order to obtain the optimum linear transform <1>, we constrain the training of a two
layer linear feed-forward network, such that at convergence, the weights for the first 
layer simultaneously diagonalizes Sm and Sb. Thus, the hetero-associative network is 
trained by minimizing a constrained MSE at the network output. This training procedure 
yields two novel algorithms for LDA. 

1.2 LDA AND GENERALIZED EIGEN-DECOMPOSITION 

Since the LDA problem is a generalized eigen-decomposition problem for the 
symmetric-definite case, the self-organizing algorithms derived from the hetero
associative networks lead us to construct adaptive algorithms for generalized eigen
decomposition. Such adaptive algorithms are required in several applications of image 
and signal processing. As an example, we consider the problem of online interference 
cancellation in digital mobile communications. 

Similar to the LDA problem Sb<1>=Sm<1>A, the generalized eigen-decomposition problem 
A<1>=B<1>A involves the matrix pencil (A ,B), where A and B are assumed to be real, 
symmetric and positive definite. Although a solution to the problem can be obtained by a 
conventional method, there are several applications in image and signal processing where 
an online solution of generalized eigen-decomposition is desired. In these real-time 
situations, the matrices A and B are themselves unknown. Instead, there are available two 
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sequences of random vectors {xk} and {Yk} with limk~ooE[x~/J =A and limk~oo 
E[Yky/'I=B, where xk and Yk represent the online observations of the application. For 
every sample (x/C>Yk), we need to obtain the current estimates <1>k and Ak of <1> and A 
respectively, such that <1>k and Ak converge strongly to their true values. 

The conventional approach for evaluating <1> and A requires the computation of (A,B) 
after collecting all of the samples, and then the application of a numerical procedure; i.e., 
the approach works in a batch fashion. There are two problems with this approach. 
Firstly, the dimension of the samples may be large so that even if all of the samples are 
available, performing the generalized eigen-decomposition may take prohibitively large 
amount of computational time. Secondly, the conventional schemes can not adapt to slow 
or small changes in the data. So the approach is not suitable for real-time applications 
where the samples come in an online fashion. 

Although the adaptive generalized eigen-decomposition algorithms are natural 
generalizations of the self-organizing algorithms for LDA, their derivations do not 
constitute a proof of convergence. We, therefore, give a rigorous proof of convergence 
by stochastic approximation theory, that shows that the estimates obtained from our 
adaptive algorithms converge with probability one to the generalized eigenvectors. 

In summary, the study offers the following contributions: (1) we present two novel 
algorithms that unify the problems of hetero-associative training and LDA feature 
extraction; and (2) we discuss two single-stage adaptive algorithms for generalized eigen
decomposition from two sequences of random vectors. 

In our experiments, we consider an example of online interference cancellation in digital 
mobile communications. In this problem, the signal from a desired user at a far distance 
from the receiver is corrupted by another user very near to the base. The optimum linear 
transform w for weighting the signal is the first principal generalized eigenvector of the 
signal correlation matrix with respect to the interference correlation matrix. Experiments 
with our algorithm suggest a rapid convergence within four bits of transmitted signal, and 
provides a significant advantage over many current methods. 

2. HETERO-ASSOCIATIVE TRAINING AND LDA 

We consider a two-layer linear network performing a one-from-m classification. Let XE 

9tn be an input to the network to be classified into one out of m classes ro l'''''rom. If x E ro j 
then the desired output d=e j (ith std. basis vector). Without loss of generality, we assume 
the inputs to be a zero-mean stationary process with a nonsingular covariance matrix. 

2.1 EXTRACTING THE PRINCIPAL LDA COMPONENTS 

In the two-layer linear hetero-associative network, let there be p neurons in the hidden 
layer, and m output units. The aim is to develop an algorithm so that indi",idual weight 
vectors for the first layer converge to the first p~m generalized eigenvectors 
corresponding to the p significant generalized eigenvalues arranged in decreasing order. 
Let WjE9tn (i=I, ... ,n) be the weight vectors for the input layer, and VjE9tm (i=I, ... ,m) be 
the weight vectors for the output layer. 

The neurons are trained sequentially; i.e., the training of the jlh neuron is started only 
after the weight vector of the (j_I)fh neuron has converged. Assume that all the j-I 
previous neurons have already been trained and their weights have converged to the 



Self-Organizing and Adaptive Generalized Eigen-Decomposition 399 

optimal weight vectors wi for i E (1 J-l]. To extract the J'h generalized eigenvector in the 
output of the /h neuron, the updating model for this neuron should be constructed by 
subtracting the results from all previously computed j-I generalized eigenvectors from 
the desired output dj as below 

- j-I T 
d j = d j - L v i W i x. (1) 

i=1 

This process is equivalent to the deflation of the desired output. 

The scatter matrices Sm and Sb can be obtained from x and d as Sm=E[xxT] and Sb= 
MMT, where M=E[xd1). We need to extract the j1h LOA transform Wj that satisfies the 
generalized eigenvector equation SbWj=AlmWj such that Aj is the J'h largest generalized 
eigenvalue. The constrained MSE criterion at the network output is 

Jh,Vj )=,lldj <~:v;wT x-vjWJxr]+ p{wJSmw j -I). (2) 

Using (2), we obtain the update equation for Wj as 

w(J) = w(J) + {Mv(J) - S w(J)(w(J)T Mv(J»)- S j~1 w(J)v(i)T v(J») 
hI k k m k k k m L.. k k k . (3) 

;=1 

Differentiating (2) with respect to vi' and equating it to zero, we obtain the optimum 
value ofvj as MTWj. Substituting this Vj in (3) we obtain 

w(J) = w(J) + {s w(J) - S w(J)(w(J)T S w(J») - S j~1 wU)w(i)TS w(J») 
k+1 k b k m k k b k m L.. k k b k . (4) 

i=1 

Let Wk be the matrix whose ith column is w~). Then (4) can be written in matrix form as 

Wk+1 = Wk + r{SbWk -SmWkU~W[SbWk p, (5) 

where UT[·] sets all elements below the diagonal of its matrix argument to zero, thereby 
making it upper triangular. 

2.2 ANOTHER SELF-ORGANIZING ALGORITHM FOR LDA 

In the previous analysis for a two-layer linear hetero-associative network, we observed 
that the optimum value for V=WTM, where the jlh column of Wand row of V are formed 
by Wi and Vi respectively. It is, therefore, worthwhile to explore the gradient descent 
procedure on the error function below instead of (2) 

J(W) = E[lld- MTWWTxI12} (6) 

By differentiating this error function with respect to W, and including the deflation 
process, we obtain the following update procedure for W instead of (5) 

Wk+1 = Wk + ~2SbWk - Sm WkUT[ W[ SbWk ] - SbWkUT[ W[ SmWk]). (7) 

3. LDA AND GENERALIZED EIGEN-DECOMPOSITION 

Since LOA consists of solving the generalized eigenvector problem Sb<P=Sm<PA, we can 
naturally generalize algorithms (5) and (7) to obtain adaptive algorithms for the 
generalized eigen-decomposition problem A<P=B<PA, where A and B are assumed to be 
symmetric and positive definite. Here, we do not have the matrices A and B. Instead, 
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there are available two sequences of random vectors {xk} and {Yk} with limk~ooE[xp/] 
=A and limk~~[Yky/]=B, where xk and Yk represent the online observations. 

From (5), we obtain the following adaptive algorithm for generalized eigen
decomposition 

(8) 

Here {17k} is a sequence of scalar gains, whose properties are described in Section 4. The 
sequences {Ak} and {Bk} are instantaneous values of the matrices A and B respectively. 
Although the Ak and Bk values can be obtained from xk and Yk as xp/ and YkY/ 
respectively, our algorithm requires that at least one of the {Ak} or {Bk} sequences have a 
dominated convergence property. Thus, the {Ak} and {Bk} sequences may be obtained 
from xp/ and YkY/ from the following algorithms 

Ak = Ak_1 +Yk(XkXk -Ak- I ) and Bk = Bk- I +Yk(YkYk -Bk-d, (9) 

where Ao and Bo are symmetric, and {Yk} is a scalar gain sequence. 
As done before, we can generalize (7) to obtain the following adaptive algorithm for 
generalized eigen-decomposition from a sequence of samples {Ak} and {Bk} 

Wk+1 = Wk + l7k(2AkWk - BkWkUT[ W[ AkWk ] - AkWkUT[ W[ BkWk ]). (10) 

Although algorithms (8) and (10) were derived from the network MSE by the gradient 
descent approach, this derivation does not guarantee their convergence. In order to prove 
their convergence, we use stochastic approximation theory. We give the convergence 
results only for algorithm (l0). 

4. STOCHASTIC APPROX. CONVG. PROOF FOR ALG. (10) 

In order to prove the con vergence of (10), we use stochastic approximation theory due to 
Ljung (1977). In stochastic approximation theory, we study the asymptotic properties of 
(10) in terms of the ordinary differential equation (ODE) 

~ W(t)= 1!!! E[2AkW - BkWUT[ W T AkW]- AkWUT[ W T BkW]], 

where W(t) is the continuous time counterpart of Wk with t denoting continuous time. The 
method of proof requires the following steps: (1) establishing a set of conditions to be 
imposed on A, B, A", B", and 17", (2) finding the stable stationary points of the ODE; and 
(3) demonstrating that Wk visits a compact subset of the domain of attraction of a stable 
stationary point infinitely often. 

We use Theorem 1 of Ljung (1977) for the convergence proof. The following is a general 
set of assumptions for the convergence proof of (10): 
Assumption (AI). Each xk and Yk is bounded with probability one, and limk~ooE[xp/] 
= A and limk~ooE[y kY k 1) = B, where A and B are positive definite. 

Assumption (A2). {l7kE9t+} satisfies l7kJ..O, Lk=Ol7k =OO,Lk=Ol7k <00 for some r>1 and 

limk~oo sup(l7i l -l7i~l) <00. 
Assumption (A3). The p largest generalized eigenvalues of A with respect to B are each 
of unit mUltiplicity. 

Lemma 1. Let Al and A2 hold. Let w* be a locally asymptotically stable (in the sense of 
Liapunov) solution to the ordinary differential equation (ODE): 
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~ W(t) = 2AW(t) - BW(t)U4W(t/ AW(t)] - AW(t)U4W(t/ BW(t)], (11) 

with domain of attraction D(W). Then if there is a compact subset S of D(W) such that 

Wk E S infinitely often, then we have Wk ~ W with probability one as k ~ 00. • 

We denote A\ > ~ > ... > Ap ~ ... ~ An > 0 as the generalized eigenvalues of A with 
respect to B, and 4>; as the generalized eigenvector corresponding to A; such that 4>\, ... ,4>n 

are orthonormal with respect to B. Let <l>=[4>\ ... 4>nl and A=diag(A\, ... ,An) denote the 
matrix of generalized eigenvectors and eigenvalues of A with respect to B. Note that if 4>; 
is a generalized eigenvector, then d;4>; (ld;l= 1) is also a generalized eigenvector. 

In the next two lemmas, we first prove that all the possible equilibrium points ofthe ODE 
(11) are up to an arbitrary permutation of the p generalized eigenvectors of A with 
respect to B corresponding to the p largest generalized eigenvalues. We next prove that 
all these equilibrium points of the ODE (11) are unstable equilibrium points, except for 
[d\4>\ ... dn4>nl, where Id;I=1 for i=I, ... ,p. 

Lemma 2. For the ordinary differential equation (11), let Al and A3 hold Then W=<l>DP 
are equilibrium points of (11), where D=[D\IOV is a nXp matrix with DI being a pXp 
diagonal matrix with diagonal elements d; such that Id;l= 1 or d;=O, and P is a nXn 
arbitrary permutation matrix. • 

Lemma 3. Let Al and A3 hold Then W=<l>D (where D=[D\101~ D\ =diag(d\, ... ,dp )' 

Id;I=I) are stable equilibrium points of the ODE (11). In addition, W=<l>DP (d;=O for i~p 

or P~J) are unstable equilibrium points of the ODE (11) . • 

Lemma 4. For the ordinary differential equation (11) , let Al and A3 hold Then the 
points W=<l>D (where D=[D\101~ D\ =diag(d\, ... ,dp )' Id;I=1 for i=I, ... ,p) are 
asymptotically stable. • 

Lemma 5. Let AI-A3 hold Then there exists a uniform upper boundfor 17k such that Wk 
is uniformly bounded w.p . I . • 

The convergence of alg. (10) can now be established by referring to Theorem 1 of Ljung. 
Theorem 1. Let A I-A3 hold Assume that with probability one the process {Wk} visits 
infinitely often a compact subset of the domain of attraction of one of the asymptotically 
stable points <l>D. Then with probability one 

lim Wk = <l>D. 
k~OCl 

Proof. By Lemma 2, <l>D (ld;I=I) are asymptotically stable points of the ODE (11). Since 
we assume that {Wk} visits a compact subset of the domain of attraction of <l>D infmitely 
often, Lemma 1 then implies the theorem. • 

5. EXPERIMENT AL RESULTS 

We describe the performance of algorithms (8) and (10) with an example of online 
interference cancellation in a high-dimensional signal, in a digital mobile communication 
problem. The problem occurs when the desired user transmits a signal from a far distance 
to the receiver, while another user simultaneously transmits very near to the base. For 
common receivers, the quality of the received signal from the desired user is dominated 
by interference from the user close to the base. Due to the high rate and large dimension 
of the data, the system demands an accurate detection method for just a few data samples. 
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If we use conventional (numerical analysis) methods, signal detection will require a 
significant part of the time slot allotted to a receiver, accordingly reducing the effective 
communication rate. Adaptive generalized eigen-decomposition algorithms, on the other 
hand, allow the tracking of slow changes, and directly performs signal detection. 

The details of the data model can be found in Zoltowski et al. (1996). In this application, 
the duration for each transmitted code is 127 IlS, within which we have lOllS of signal 
and 1171ls of interference. We take 10 frequency samples equi-spaced between -O.4MHz 
to +O.4MHz. Using 6 antennas, the signal and interference correlation matrices are of 
dimension 60X60 in the complex domain. 

We use both algorithms (8) and (10) for the cancellation of the interference. Figure 1 
shows the convergence of the principal generalized eigenvector and eigenvalue. The 
closed form solution is obtained after collecting all of the signal and interference 
samples. In order to measure the accuracy of the algorithms, we compute the direction 
cosine of the estimated principal generalized eigenvector and the generalized eigenvector 
computed by the conventional method. The optimum value is one. We also show the 
estimated principal generalized eigenvalue in Figure 1 b. The results show that both 
algorithms converge after the 4th bit of signal. 
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Figure 1. (a) Direction Cosine of Estimated First Principal Generalized Eigenvector, and 
(b) Estimated First Principal Generalized Eigenvalue. 
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