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We study a mistake-driven variant of an on-line Bayesian learn­
ing algorithm (similar to one studied by Cesa-Bianchi, Helmbold, 
and Panizza [CHP96]). This variant only updates its state (learns) 
on trials in which it makes a mistake. The algorithm makes binary 
classifications using a linear-threshold classifier and runs in time lin­
ear in the number of attributes seen by the learner. We have been 
able to show, theoretically and in simulations, that this algorithm 
performs well under assumptions quite different from those embod­
ied in the prior of the original Bayesian algorithm. It can handle 
situations that we do not know how to handle in linear time with 
Bayesian algorithms. We expect our techniques to be useful in 
deriving and analyzing other apobayesian algorithms. 

1 Introduction 

We consider two styles of on-line learning. In both cases, learning proceeds in a 
sequence of trials. In each trial, a learner observes an instance to be classified, 
makes a prediction of its classification, and then observes a label that gives the 
correct classification. One style of on-line learning that we consider is Bayesian. 
The learner uses probabilistic assumptions about the world (embodied in a prior 
over some model class) and data observed in past trials to construct a probabilistic 
model (embodied in a posterior distribution over the model class). The learner uses 
this model to make a prediction in the current trial. When the learner is told the 
correct classification of the instance, the learner uses this information to update the 
model, generating a new posterior to be used in the next trial. 

In the other style of learning that we consider, the attention is on the correctness 
of the predictions rather than on the model of the world. The internal state of the 
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learner is only changed when the learner makes a mistake (when the prediction fails 
to match the label). We call such an algorithm mistake-driven. (Such algorithms are 
often called conservative in the computational learning theory literature.) There is a 
simple way to derive a mistake-driven algorithm from anyon-line learning algorithm 
(we restrict our attention in this paper to deterministic algorithms). The derived 
algorithm is just like the original algorithm, except that before every trial, it makes 
a record of its entire state, and after every trial in which its prediction is correct, 
it resets its state to match the recorded state, entirely forgetting the intervening 
trial. (Typically this is actually implemented not by making such a record, but by 
merely omitting the step that updates the state.) For example, if some algorithm 
keeps track of the number of trials it has seen, then the mistake-driven version of 
this algorithm will end up keeping track of the number of mistakes it has made. 
Whether the original or mistake-driven algorithm will do better depends on the task 
and on how the algorithms are evaluated. 

We will start with a Bayesian learning algorithm that we call SBSB and use this 
procedure to derive a mistake-driven variant, SASB. Note that the variant cannot 
be expected to be a Bayesian learning algorithm (at least in the ordinary sense) 
since a Bayesian algorithm would make a prediction that minimizes the Bayes risk 
based on all the available data, and the mistake-driven variant has forgotten quite 
a bit. We call such algorithms apobayesian learning algorithms. This name is 
intended to suggest that they are derived from Bayesian learning algorithms, but 
are not themselves Bayesian. Our algorithm SASB is very close to an algorithm 
of [CHP96). We study its application to different tasks than they do, analyzing its 
performance when it is applied to linearly separable data as described below. 

In this paper instances will be chosen from the instance space X = {a, l}n for some 
n. Thus instances are composed of n boolean attributes. We consider only two 
category classifications tasks, with predictions and labels chosen from Y = {a, I} . 

We obtain a' bound on the number of mistakes SASB makes that is comparable to 
bounds for various Winnow family algorithms given in [Lit88,Lit89). As for those 
algorithms, the bound holds under the assumption that the points labeled 1 are 
linearly separable from the points labeled 0, and the bound depends on the size 8 of 
the gap between the two classes. (See Section 3 for a definition of 8.) The mistake 
bound for SASB is 0 ( /or log ~ ). While this bound has an extra factor of log ~ not 
present in the bounds for the Winnow algorithms, SASB has the advantage of not 
needing any parameters. The Winnow family algorithms have parameters, and the 
algorithms' mistake bounds depend on setting the parameters to values that depend 
on 8. (Often, the value of 8 will not be known by the learner.) We expect the 
techniques used to obtain this bound to be useful in analyzing other apobayesian 
learning algorithms. 

A number of authors have done related research regarding worst-case on-line 
loss bounds including [Fre96,KW95,Vov90). Simulation experiments involving a 
Bayesian algorithm and a mistake-driven variant are described in [Lit95). That 
paper provides useful background for this paper. Note that our present analysis 
techniques do not apply to the apobayesian algorithm studied there. The closest of 
the original Winnow family algorithms to SASB appears to be the Weighted Ma­
Jority algorithm [LW94], which was analyzed for a case similar to that considered 
in this paper in [Lit89). One should get a roughly correct impression of SASB if 
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one thinks of it as a version of the Weighted Majority algorithm that learns its 
parameters. 

In the next section we describe the Bayesian algorithm that we start with. In 
Section 3 we discuss its mistake-driven apobayesian variant. Section 4 mentions 
some simulation experiments using these algorithms, and Section 5 is the conclusion. 

2 A Bayesian Learning Algorithm 

To describe the Bayesian learning algorithm we must specify a family of distribu­
tions over X x Y and a prior over this family of distributions. We parameterize 
the distributions with parameters ((h, ... , 8n + l ) chosen from e = [0, 1 ]n+l. The 
parameter 8n +1 gives the probability that the label is 1, and the parameter 8i gives 
the probability that the ith attribute matches the label. Note that the probability 
that the ith attribute is 1 given that the label is 1 equals the probability that the 
ith attribute is 0 given that the label is O. We speak of this linkage between the 
probabilities for the two classes as a symmetry condition. With this linkage, the 
observation of a point from either class will affect the posterior distribution for both 
classes. It is perhaps more typical to choose priors that allow the two classes to be 
treated separately, so that the posterior for each class (giving the probability of ele­
ments of X conditioned on the label) depends only on the prior and on observations 
from that class. The symmetry condition that we impose appears to be important 
to the success of our analysis of the apobayesian variant of this algorithm. (Though 
we impose this condition to derive the algorithm, it turns out that the apobayesian 
variant can actually handle tasks where this condition is not satisfied.) 

We choose a prior on e that gives probability 1 to the set of all elements 
() = (81, ... , 8n +l ) E e for which at most one of 81 , ... ,8n does not equal !. 
The prior is uniform on this set. Note that for any () in this set only a single at­
tribute has a probability other than ~ of matching the label, and thus only a single 
attribute is relevant. Concentrating on this set turns out to lead to an apobayesian 
algorithm that can, in fact, handle more than one relevant attribute and that per­
forms particularly well when only a small fraction of the attributes are relevant. 

This prior is related to to the familiar Naive Bayes model, which also assumes 
that the attributes are conditionally independent given the labels. However, in the 
typical Naive Bayes model there is no restriction to a single relevant attribute and 
the symmetry condition linking the two classes is not imposed. 

Our prior leads to the following algorithm. (The name SBSB stands for "Symmetric 
Bayesian Algorithm with Singly-variant prior for Bernoulli distribution.") 

Algorithm SBSB Algorithm SBSB maintains counts Si of the number of times 
each attribute matches the label, a count M of the number of times the label is 1, 
and a count t of the number of trials. 

Initialization Si t- 0 for i = 1, ... ,n M t-O tt-O 

Prediction Predict 1 given instance (Xl, ... ,xn ) if and only if 

(M + 1) f= XiCSi+l)+Clixi)(t-Si+1) > (t - M + 1) f= (1-Xi)(Si+1~+XiCt-si+l) 
i=l (S,) i=l (S.) 

Update M t- M + y, t t- t + 1, and for each i, if Xi = Y then Si t- Si + 1 



An Apobayesian Relative of Winnow 207 

3 An Apobayesian Algorithm 

We construct an apobayesian algorithm by converting algorithm SBSB into a 
mistake-driven algorithm using the standard conversion given in the introduction. 
We call the resulting learning algorithm SASBj we have replaced "Bayesian" with 
"Apobayesian" in the acronym. 

In the previous section we made assumptions made about the generation of the 
instances and labels that led to SBSB and thence to SASB. These assumptions 
have served their purpose and we now abandon them. In analyzing the apobayesian 
algorithm we do not assume that the instances and labels are generated by some 
stochastic process. Instead we assume that the instance-label pairs in all of the 
trials are linearly-separable, that is, that there exist some WI, ., . ,Wn , and c such 
that for every instance-label pair (x, y) we have E~=I WiXi ;::: c when y = 1 and 
2:~=1 WiXi ::; c when y = O. We actually make a somewhat stronger assumption, 
given in the following theorem, which gives our bound for the apobayesian algorithm. 

Theorem 1 Suppose that 'Yi ;::: 0 and "Ii ;::: 0 for i = 1, ... , n, and that 2:~=1 'Yi + 
"I i = 1. Suppose that 0 ::; bo < bi ::; 1 and let 8 = bi - bo. Suppose that algorithm 
SASB is run on a sequence of trials such that the instance x and label y in each 
trial satisfy 2:~=1 'YiXi + "Ii (1 - Xi) ::; bo if y = 0 and 2:~=1 'YiXi + "Ii (1 - Xi) ;::: bi if 
y = 1. Then the number of mistakes made by SASB will be bounded by * log 8; . 

We have space to say only a little about how the derivation of this bound proceeds. 
Details are given in [Lit96]. 

In analyzing SASB we work with an abstract description of the associated algorithm 
SBSB. This algorithm starts with a prior on e as described above. We represent 
this with a density Po. Then after each trial it calculates a new posterior density 

Pt(O) = t-d8kP(X'YI~k, where Pt is the density after trial t and P(x, ylO) is the 
pt-d )P(x,y ) 

conditional probability ofthe instance x and label y observed in trial t given O. Thus 
we can think of the algorithm as maintaining a current distribution on e that is 
initially the prior. SASB is similar, but it leaves the current distribution unchanged 
when a mistake is not made. For there to exist a finite mistake bound there must 
exist some possible choice for the current distribution for which SASB would make 
perfect predictions, should it ever arrive at that distribution. We call any such 
distribution leading to perfect predictions a possible target distribution. It turns out 
that the separability condition given in Theorem 1 guarantees that a suitable target 
distribution exists. The analysis proceeds by showing that for an appropriate choice 
of a target density p the relative entropy of the current distribution with respect to 
the target distribution, J p( 0) log(p( 0) / Pt (0)), decreases by at least some amount 
R > 0 whenever a mistake is made. Since the relative entropy is never negative, the 
number of mistakes is bounded by the initial relative entropy divided by R. This 
form of analysis is very similar to the analysis of the various members of the Winnow 
family in [Lit89,Lit91]. 

The same technique can be applied to other apobayesian algorithms. The abstract 
update of Pt given above is quite general. The success of the analysis depends on 
conditions on Po and P(x, ylO) that we do not have space here to discuss. 
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Figure 1: Comparison of SASB with SBSB 

4 Simulation Experiments 

The bound of the previous section was for perfectly linearly-separable data. We 
have also done some simulation experiments exploring the performance of SASB on 
non-separable data and comparing it with SBSB and with various other mistake­
driven algorithms. A sample comparison of SASB with SBSB is shown in Figure 
1. In each experimental run we generated 10000 trials with the instances and labels 
chosen randomly according to a distribution specified by (h = '" = Ok = 1 - p, 
Ok+l = ... = 0n+l = .5 where 01 , ••. ,On+l are interpreted as specified in Section 
2, n is the number of attributes, and n, p, and k are as specified at the top of each 
plot. The line labeled "optimal" shows the performance obtained by an optimal 
predictor that knows the distribution used to generate the data ahead of time, and 
thus does not need to do any learning. The lines labeled "SBSB" and "SASB" show 
the performance of the corresponding learning algorithms. The lines labeled "SASB 
+ voting" show the performance of SASB with the addition of a voting procedure 
described in [Lit95]. This procedure improves the asymptotic mistake rate of the 
algorithms. Each line on the graph is the average of 30 runs. Each line plots the 
cumulative number of mistakes made by the algorithm from the beginning of the run 
as a function of the number of trials. 

In the left hand plot, there is only 1 relevant attribute. This is exactly the case that 
SBSB is intended for, and it does better than SASB. In right hand plot, there are 5 
relevant attributes; SBSB appears unable to take advantage of the extra information 
present in the extra relevant attributes, but SASB successfully does. 

Comparison of SASB and previous Winnow family algorithms is still in progress, 
and we defer presenting details until a clearer picture has been obtained. SASB and 
the Weighted Majority algorithm often perform similarly in simulations. Typically, 
as one would expect, the Weighted Majority algorithm does somewhat better than 
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SASB when its parameters are chosen optimally for the particular learning task, and 
worse for bad choices of parameters. 

5 Conclusion 

Our mistake bounds and simulations suggest that SASB may be a useful alternative 
to the existing algorithms in the Winnow family. Based on the analysis style and the 
bounds, SASB should perhaps itself be considered a Winnow family algorithm. Fur­
ther experiments are in progress comparing SASB with Winnow family algorithms 
run with a variety of parameter settings. 

Perhaps of even greater interest is the potential application of our analytic techniques 
to a variety of other apobayesian algorithms (though as we have observed earlier, 
the techniques do not appear to apply to all such algorithms) . We have already 
obtained some preliminary results regarding an interpretation of the Perceptron 
algorithm as an apobayesian algorithm. We are interested in looking for entirely 
new algorithms that can be derived in this way and also in better understanding 
the scope of applicability of our techniques. All of the analyses that we have looked 
at depend on symmetry conditions relating the probabilities for the two classes. It 
would be of interest to see what can be said when such symmetry conditions do not 
hold. In simulation experiments [Lit95], a mistake-driven variant of the standard 
Naive Bayes algorithm often does very well, despite the absence of such symmetry 
in the prior that it is based on. 

Our simulation experiments and also the analysis of the related algorithm Winnow 
[Lit91] suggest that SASB can be expected to handle some instance-label pairs inside 
of the separating gap or on the wrong side, especially if they are not too far on the 
wrong side. In particular it appears to be able to handle data generated according 
to the distributions on which SBSB is based, which do not in general yield perfectly 
separable data. 

It is of interest to compare the capabilities of the original Bayesian algorithm with 
the derived apobayesian algorithm. When the data is stochastically generated in a 
manner consistent with the assumptions behind the original algorithm, the original 
Bayesian algorithm can be expected to do better (see, for example, Figure 1). On 
the other hand, the apobayesian algorithm can handle data beyond the capabilit­
ies of the original Bayesian algorithm. For example, in the case we consider, the 
apobayesian algorithm can take advantage of the presence of more than one relevant 
attribute, even though the prior behind the original Bayesian algorithm assumes a 
single relevant attribute. Furthermore, as for all of the Winnow family algorithms, 
the mistake bound for the apobayesian algorithm does not depend on details of the 
behavior of the irrelevant attributes (including redundant attributes). 

Instead of using the apobayesian variant, one might try to construct a Bayesian 
learning algorithm for a prior that reflects the actual dependencies among the at­
tributes and the labels. However, it may not be clear what the appropriate prior is. 
It may be particularly unclear how to model the behavior of the irrelevant attrib­
utes. Furthermore, such a Bayesian algorithm may end up being computationally 
expensive. For example, attempting to keep track of correlations among all pairs 
of attributes may lead to an algorithm that needs time and space quadratic in the 
number of attributes. On the other hand, if we start with a Bayesian algorithm that 
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uses time and space linear in the number of attributes we can obtain an apobayesian 
algorithm that still uses linear time and space but that can handle situations beyond 
the capabilities of the original Bayesian algorithm. 
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