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Abstract 

The mortality related to cervical cancer can be substantially re­
duced through early detection and treatment. However, cur­
rent detection techniques, such as Pap smear and colposcopy, 
fail to achieve a concurrently high sensitivity and specificity. In 
vivo fluorescence spectroscopy is a technique which quickly, non­
invasively and quantitatively probes the biochemical and morpho­
logical changes that occur in pre-cancerous tissue. RBF ensemble 
algorithms based on such spectra provide automated, and near real­
time implementation of pre-cancer detection in the hands of non­
experts. The results are more reliable, direct and accurate than 
those achieved by either human experts or multivariate statistical 
algorithms. 

1 Introduction 

Cervical carcinoma is the second most common cancer in women worldwide, ex­
ceeded only by breast cancer (Ramanujam et al., 1996). The mortality related to 
cervical cancer can be reduced if this disease is detected at the pre-cancerous state, 
known as squamous intraepitheliallesion (SIL). Currently, a Pap smear is used to 
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screen for cervical cancer {Kurman et al., 1994}. In a Pap test, a large number of 
cells obtained by scraping the cervical epithelium are smeared onto a slide which 
is then fixed and stained for cytologic examination. The Pap smear is unable to 
achieve a concurrently high sensitivityl and high specificity2 due to both sampling 
and reading errors (Fahey et al., 1995). Furthermore, reading Pap smears is ex­
tremely labor intensive and requires highly trained professionals. A patient with 
a Pap smear interpreted as indicating the presence of SIL is followed up by a di­
agnostic procedure called colposcopy. Since this procedure involves biopsy, which 
requires histologic evaluation, diagnosis is not immediate. 

In vivo fluorescence spectroscopy is a technique which has the capability to quickly, 
non-invasively and quantitatively probe the biochemical and morphological changes 
that occur as tissue becomes neoplastic. The measured spectral information can be 
correlated to tissue histo-pathology, the current "gold standard" to develop clinically 
effective screening and diagnostic algorithms. These mathematical algorithms can 
be implemented in software thereby, enabling automated, fast, non-invasive and 
accurate pre-cancer screening and diagnosis in hands of non-experts. 

A screening and diagnostic technique for human cervical pre-cancer based on laser 
induced fluorescence spectroscopy has been developed recently (Ramanujam et al., 
1996). Screening and diagnosis was achieved using a multivariate statistical algo­
rithm (MSA) based on principal component analysis and logistic discrimination of 
tissue spectra acquired in vivo. Furthermore, we designed Radial Basis Function 
(RBF) network ensembles to improve the accuracy of the multivariate statistical 
algorithm, and to simplify the decision making process. Section 2 presents the data 
collection/processing techniques. In Section 3, we discuss the MSA, and describe 
the neural network based methods. Section 4 contains the experimental results and 
compares the neural network results to both the results of the MSA and to current 
clinical detection methods. A discussion of the results is given in Section 5. 

2 Data Collection and Processing 

A portable fluorimeter consisting of two nitrogen pumped-dye lasers, a fiber-optic 
probe and a polychromator coupled to an intensified diode array controlled by an 
optical multi-channel analyzer was utilized to measure fluorescence spectra from the 
cervix in vivo at three excitation wavelengths: 337, 380 and 460 nm (Ramanujam 
et al., 1996). Tissue biopsies were obtained only from abnormal sites identified by 
colposcopy and subsequently analyzed by the probe to comply with routine patient 
care procedure. Hemotoxylin and eosin stained sections of each biopsy specimen 
were evaluated by a panel of four board certified pathologists and a consensus 
diagnosis was established using the Bethesda classification system. Samples were 
classified as normal squamous (NS), normal columnar (NC), low grade (LG) SIL 
and high grade (HG) SIL. Table 1 provides the number of samples in the training 
(calibration) and test sets. Based on this data set, a clinically useful algorithm 
needs to discriminate SILs from the normal tissue types. 

Figure 1 illustrates average fluorescence spectra per site acquired from cervical sites 
at 337 nm excitation from a typical patient. Evaluation of the spectra at 337 nm ex-

lSensitivity is the correct classification percentage on the pre-cancerous tissue samples. 
2Specificity is the correct classification percentage on normal tissue samples. 
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Table 1: Histo-pathologic classification of samples. 

Histo-pathology 
Nonnal 

SIL 

1faining Set 
107 (SN: 94; SC: 13) 
58 (LG: 23; HG: 35) 

Test Set 
108 (SN: 94; SC: 14) 
59 (LG: 24; HG: 35) 
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citation highlights one of the classification difficulties, namely that the fluorescence 
intensity of SILs (LG and HG) is less than that of the corresponding normal squa­
mous tissue and greater than that of the corresponding normal columnar tissue over 
the entire emission spectrum3 . Fluorescence spectra at all three excitation wave­
lengths comprise of a total of 161 excitation-emission wavelengths pairs. However, 
there is a significant cost penalty for using all 161 values. To alleviate this concern, 
a more cost-effective fluorescence imaging system was developed, using component 
loadings calculated from principal component analysis. Thus, the number of re­
quired fluorescence excitation-emission wavelength pairs were reduced from 161 to 
13 with a minimal drop in classification accuracy (Ramanujam et al., 1996). 
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Figure 1: Fluorecsence spectra from a typical patient at 337 nm excitation. 

3 Algorithm Development 

3.1 Multivariate Statistical Algorithms 

The multivariate statistical algorithm development described in (Ramanujam et al., 
1996) consists of the following five steps: (1) pre-processing to reduce inter-patient 
and intra-patient variation of spectra from a tissue type, (2) dimension reduction 
of the pre-processed tissue spectra using Principal Component Analysis (PCA), 
(3) selection of diagnostically relevant principal components, (4) development of a 
classification algorithm based on logistic discrimination, and finally (5) retrospective 
and prospective evaluation of the algorithm's accuracy on a training (calibration) 
and test (prediction) set, respectively. Discrimination between SILs and the two 
normal tissue types could not be achieved effectively using MSA. Therefore two 

3Spectral features observed in Figure 1 are representative of those measured at 380 nm 
and 460 nm excitation (not shown here). 
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constituent algorithms were developed: algorithm (1), to discriminate between SILs 
and normal squamous tissues, and algorithm (2), to discriminate between SILs and 
normal columnar tissues (Ramanujam et al., 1996). 

3.2 Algorithms based on Neural Networks 

The second stage of algorithm development consists of evaluating the applicability of 
neural networks to this problem. Initially, both Multi-Layered Perceptrons (MLPs) 
and Radial Basis function (RBF) networks were considered. However, MLPs failed 
to improve upon the MSA results for both algorithms (1) and (2), and frequently 
converged to spurious solutions. Therefore, our study focuses on RBF networks and 
RBF network ensembles. 

Radial Basis Function Networks: The first step in applying RBF networks to 
this problem consisted of retracing the two-step process outlined for the multivariate 
statistical algorithm. For constituent algorithm (1) the kernels were initialized using 
a k-means clustering algorithm on the training set containing NS tissue samples 
and SILs. The RBF networks had 10 kernels, whose locations and spreads were 
adjusted during training. For constituent algorithm (2), we selected 10 kernels, half 
of which were fixed to patterns from the columnar normal class, while the other half 
were initialized using a k-means algorithm. Neither the kernel locations nor their 
spreads were adjusted during training. This process was adopted to rectify the large 
discrepancy between the samples from each category (13 for columnar normal vs. 
58 for SILs). For each algorithm, the training time was estimated by maximizing 
the performance on one validation set. Once the stopping time was established, 20 
cases were run for each algorithm4. 

Linear and Order statistics Combiners: There were significant variations 
among different runs of the RBF networks for all three algorithms. Therefore, 
selecting the "best" classifier was not the ideal choice. First, the definition of 
"best" depends on the selection of the validation set, making it difficult to ascertain 
whether one network will outperform all others given a different test set, as the val­
idation sets are small. Second, selecting only one classifier discards a large amount 
of potentially relevant information. In order to use all the available data, and to 
increase both the performance and the reliability of the methods, the outputs of 
RBF networks were pooled before a classification decision was made. 

The concept of combining classifier outputs5 has been explored in a multitude of 
articles (Hansen and Salamon, 1990; Wolpert, 1992). In this article we use the 
median combiner, which belongs to the class order statistics combiners introduced 
in (Turner and Ghosh, 1995), and the averaging combiner, which performs an arith­
metic average of the corresponding outputs. 

4 Results 

Two-step algorithm: The ensemble results reported are based on pooling 20 dif­
ferent runs of RBF networks, initialized and trained as described in the previous 
section. This procedure was repeated 10 times to ascertain the reliability of the 

4Each run has a different initialization set of kernels/spreads/weights. 
5 An extensive bibliography is available in (Turner and Ghosh, 1996). 
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result and to obtain the standard deviations. For an application such as pre-cancer 
detection, the cost of a misclassification varies greatly from one class to another. 
Erroneously labeling a healthy tissue as pre-cancerous can be corrected when fur­
ther tests are performed. Labeling a pre-cancerous tissue as healthy however, can 
lead to disastrous consequences. Therefore, for algorithm (1), we have increased the 
cost of a misclassified SIL until the sensitivity6 reached a satisfactory level. The 
sensitivity and specificity values for constituent algorithm (1) based on both MSA 
and RBF ensembles are provided in Table 2. Table 3 presents sensitivity and speci­
ficity values for constituent algorithm (2) obtained from MSA and RBF ensembles 7 . 

For both algorithms (1) and (2), the RBF based combiners provide higher speci­
ficity than the MSA. The median combiner provides results similar to those of the 
average combiner, except for algorithm (2) where it provides better specificity. In 
order to obtain the final discrimination between normal tissue and SILs, constituent 
algorithms (1) and (2) are used sequentially, and the results are reported in Table 4. 

Table 2: Accuracy of constituent algorithm (1) for differentiating SILs and normal 
squamous tissues, using MSA and RBF ensembles. 

Algorithm Specificity Sensitivity 
MSA 63% 90% 

RBF-ave 66% ±1% 90% ±O% 
RBF-med 66% ±1% 90% ±1% 

Table 3: Accuracy of constituent algorithm (2) for differentiating SILs and normal 
columnar tissues, using MSA and RBF ensembles. 

Algorithm Specificity Sensitivity 
MSA 36% 97% 

RBF-ave 37% ±5% 97% ±O% 
RBF-med 44% ±7% 97% ±O% 

One-step algorithm: The results presented above are based on the multi-step 
algorithm specifically developed for the MSA, which could not consolidate algo­
rithms (1) and (2) into one step. Since the ultimate goal of these two algorithms is 
to separate SILs from normal tissue samples, a given pattern has to be processed 
through both algorithms. In order to simplify this decision process, we designed a 
one step RBF network to perform this separation. Because the pre-processing for 
algorithms (1) and (2) is different8 , the input space is now 26-dimensional. We ini­
tialized 10 kernels using a k-means algorithm on a trimmed9 version of the training 
set. The kernel locations and spreads were not adjusted during training. The cost 
of a misclassified SIL was set at 2.5 times the cost of a misclassified normal tissue 

SIn this case, the cost of misclassifying a SIL was three times the cost of misclassifying 
a normal tissue sample. 

7In this case, there was no need to increase the cost of a misclassified SIL, because of 
the high prominence of SILs in the training set. 

8Normalization vs. normalization followed by mean scaling. 
9The trimmed set has the same number of patterns from each class. Thus, it forces 

each class to have a similar number of kernels. This set is used only for initializing the 
kernels. 
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sample, in order to provide the best sensitivity/specificity pair. The average and 
median combiner results are obtained by pooling 20 RBF networks10 . 

Table 4: One step RBF algorithm compared to multi-step MSA and clinical methods 
for differentiating SILs and normal tissue samples. 

Algorithm Specificity Sensitivity 
2-step MSA 63% 83% 

2-step RB F -ave 65% ±2% 87% ±1% 
2-step RBF-med 67% ±2% 87% ±1% 

RBF-ave 67% ±.75% 91% ±1.5% 
RBF-med 65.5% ±.5% 91% ±1% 

Pap smear (human expert) 68% ±21% 62% ±23% 
Colposcopy (human expert) 48%±23 % 94% ±6% 

The results of both the two-step and one-step RBF algorithms and the results of 
the two-step MSA are compared to the accuracy of Pap smear screening and col­
poscopy in expert hands in Table 4. A comparison of one-step RBF algorithms 
to the two-step RBF algorithms indicates that the one-step algorithms have simi­
lar specificities, but a moderate improvement in sensitivity relative to the two-step 
algOrithms. Compared to the MSA, the one-step RBF algorithms have a slightly 
decreased specificity, but a substantially improved sensitivity. In addition to the 
improved sensitivity, the one step RBF algorithms simplify the decision making pro­
cess. A comparison between the one step RBF algorithms and Pap smear screening 
indicates that the RBF algorithms have a nearly 30% improvement in sensitivity 
with no compromise in specificity; when compared to colposcopy in expert hands, 
the RBF ensemble algorithms maintain the sensitivity of expert colposcopists, while 
improving the specificity by almost 20%. Figure 2 shows the trade-off between speci­
ficity and sensitivity for clinical methods, MSA and RBF ensembles, obtained by 
changing the misclassification cost. The RBF ensembles provide better sensitivity 
and higher reliability than any other method for a given specificity value. 
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Figure 2: Trade-off between sensitivity and specifity for MSA and RBF ensembles. 
For reference, Pap smear and colposcopy results from the literature are included (Fa­
hey et al., 1995). 

lOThis procedure is repeated 10 times, in order to determine the standard deviation. 



Spectroscopic Detection of Cervical Pre-cancer through RBF Networks 987 

5 Discussion 

The classification results of both the multivariate statistical algorithms and the 
radial basis function network ensembles demonstrate that significant improvement 
in classification accuracy can be achieved over current clinical detection modalities 
using cervical tissue spectral data obtained from in vivo fluorescence spectroscopy. 
The one-step RBF algorithm has the potential to significantly reduce the number 
of pre-cancerous cases missed by Pap smear screening and the number of normal 
tissues misdiagnosed by expert colposcopists. 

The qualitative nature of current clinical detection modalities leads to a significant 
variability in classification accuracy. For example, estimates of the sensitivity and 
specificity of Pap smear screening have been shown to range from 11-99% and 14-
97%, respectively (Fahey et al., 1995). This limitation can be addressed by the 
RBF network ensembles which demonstrate a significantly smaller variability in 
classification accuracy therefore enabling more reliable classification. In addition 
to demonstrating a superior sensitivity, the RBF ensembles simplify the decision 
making process of the two-step algorithms based on MSA into a single step that 
discriminates between SILs and normal tissues. We note that for the given data 
set, both MSA and MLP were unable to provide satisfactory solutions in one step. 

The one-step algorithm development process can be readily implemented in soft­
ware, enabling automated detection of cervical pre-cancer. It provides near real 
time implementation of pre-cancer detection in the hands of non-experts, and can 
lead to wide-scale implementation of screening and diagnosis and more effective 
patient management in the prevention of cervical cancer. The success of this appli­
cation will represent an important step forward in both medical laser spectroscopy 
and gynecologic oncology. 
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