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Abstract 

We consider the microscopic equations for learning problems in 
neural networks. The aligning fields of an example are obtained 
from the cavity fields, which are the fields if that example were 
absent in the learning process. In a rough energy landscape, we 
assume that the density of the local minima obey an exponential 
distribution, yielding macroscopic properties agreeing with the first 
step replica symmetry breaking solution. Iterating the microscopic 
equations provide a learning algorithm, which results in a higher 
stability than conventional algorithms. 

1 INTRODUCTION 

Most neural networks learn iteratively by gradient descent. As a result, closed ex­
pressions for the final network state after learning are rarely known. This precludes 
further analysis of their properties, and insights into the design of learning algo­
rithms. To complicate the situation, metastable states (i .e. local minima) are often 
present in the energy landscape of the learning space so that, depending on the 
initial configuration, each one is likely to be the final state. 

However, large neural networks are mean field systems since the examples and 
weights strongly interact with each other during the learning process. This means 
that when one example or weight is considered, the influence of the rest of the system 
can be regarded as a background satisfying Some averaged properties. The situation 
is similar to a number of disordered systems such as spin glasses, in which mean 
field theories are applicable (Mezard, Parisi & Virasoro, 1987). This explains the 
success of statistical mechanical techniques such as the replica method in deriving 
the macroscopic properties of neural networks, e.g. the storage capacity (Gardner 
& Derrida 1988), generalization ability (Watkin, Rau & Biehl 1993). The replica 
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method, though, provides much less information on the microscopic conditions of 
the individual dynamical variables. 

An alternative mean field approach is the cavity method. It is a generalization of 
the Thouless-Anderson-Palmer approach to spin glasses, which started from mi­
croscopic equations of the system elements (Thouless, Anderson & Palmer, 1977). 
Mezard applied the method to neural network learning (Mezard, 1989) . Subse­
quent extensions were made to the teacher-student perceptron (Bouten, Schietse 
& Van den Broeck 1995), the AND machine (Griniasty, 1993) and the multiclass 
perceptron (Gerl & Krey, 1995) . They yielded macroscopic properties identical to 
the replica approach, but the microscopic equations were not discussed, and the 
existence of local minima was neglected. 

Recently, the cavity method was applied to general classes of single and multilayer 
networks with smooth energy landscapes, i.e. without the local minima (Wong, 
1995a). The aligning fields of the examples satisfy a set of microscopic equations. 
Solving these equations iteratively provides a learning algoirthm, as confirmed by 
simulations in the maximally stable perceptron and the committee tree. The method 
is also useful in solving the dynamics of feedforward networks which were unsolvable 
previously (Wong, 1995b) . 

Despite its success, the theory is so far applicable only to the regime of smooth 
energy landscapes. Beyond this regime, a stability condition is violated, and local 
minima begin to appear (Wong, 1995a). In this paper I present a mean field theory 
for the regime of rough energy landscapes. The complete analysis will be published 
elsewhere and here I sketch the derivations, emphasizing the underlying physical 
picture. As shown below, a similar set of microscopic equations hold in this case, as 
confirmed by simulations in the committee tree . In fact, we find that the solutions to 
these equations have a higher stability than other conventional learning algorithms. 

2 MICROSCOPIC EQUATIONS FOR SMOOTH 
ENERGY LANDSCAPES 

We proceed by reviewing the cavity method for the case of smooth energy land­
scapes. For illustration we consider the single layer neural network (for two layer 
networks see Wong, 1995a). There are N » 1 input nodes {Sj} connecting to a 
single output node by the synaptic weights {Jj}. The output state is determined 
by the sign of the local field at the output node, i.e. Sout = sgn(Lj JjSj ). Learning 
a set of p examples means to find the weights {Jj} such that the network gives the 
correct input-to-output mapping for the examples. If example J.l maps the inputs Sf 
to the output 01-', then a successful learning process should find a weight vector Jj 

such that sgn(Lj Jj~j) = 1, where ~j = 01-' Sf. Thus the usual approach to learn­
ing is to first define an energy function (or error function) E = Ll-'g(AI-')' where 

AI-' == Lj Jj~f /VN are the aligning fields, i.e. the local fields in the direction of the 

correct output, normalized by the factor VN. For example, the Adatron algorithm 
uses the energy function g(A) = (I\: - A)6(1\: - A) where I\: is the stability parameter 
and 6 is the step function (Anlauf & Biehl, 1989). Next, one should minimize E 
by gradient descent dynamics. To avoid ambiguity, the weights are normalized to 
'" . S~ = '" . J~ = N L...J J L...J J . 

The cavity method uses a self-consistency argument to consider what happens when 
a set of p examples is expanded to p + 1 examples. The central quantity in this 
method is the cavity field. For an added example labelled 0, the cavity field is 
the aligning field when it is fed to a network which learns examples 1 to p (but 
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never learns example 0), i.e. to == Ej JjeJ 1v'N. Since the original network has 
no information about example 0, Jj and eJ are uncorrelated. Thus the cavity field 
obeys a Gaussian distribution for random example inputs. 

After the network has learned examples 0 to p, the weights adjust from {Jj} to 
{Jj}, and the cavity field to adjusts to the generic aligning field Ao. As shown 
schematically in Fig. l(a), we assume that the adjustments of the aligning fields 
of the original examples are small, typically of the order O(N-l/2). Perturbative 
analysis concludes that the aligning field is a well defined function of the cavity field, 
i.e. Ao = A(to) where A(t) is the inverse function of 

t = A + ,9' (A), (1) 

and, is called the local susceptibility. The cavity fields satisfy a set of self-consistent 
equations 

t JJ = I)A(tv) - tv]QVJJ + aXA(t JJ ) (2) 
vtJJ 

where QVJJ = Lj e;ej IN . X is called nonlocal susceptibility, and a == piN. The 
weights Jj are given by 

(3) 

Noting the Gaussian distribution of the cavity fields, the macroscopic properties of 
the neural network, such as the storage capacity, can be derived, and the results 
are identical to those obtained by the replica method (Gardner & Derrida 1988). 

However, the real advantage of the cavity method lies in the microscopic information 
it provides. The above equations can be iterated sequentially, resulting in a general 
learning algorithm. Simulations confirm that the equations are satisfied in the single 
layer percept ron , and their generalized version holds in the committee tree at low 
loading (Wong, 1995a). 
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Figure 1: Schematic drawing of the change in the energy landscape in the weight 
space when example 0 is added, for the regime of (a) smooth energy landscape, (b) 
rough energy landscape. 
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3 MICROSCOPIC EQUATIONS FOR ROUGH ENERGY 
LANDSCAPES 

However, the above argument holds under the assumption that the adjustment 
due to the addition of a new example is controllable. We can derive a stability 
condition for this assumption, and we find that it is equivalent to the Almeida­
Thouless condition in the replica method (Mezard, Parisi & Virasoro, 1987). 

An example for such instability occurs in the committee tree, which consists of 
hidden nodes a = 1, ... , K with binary outputs, each fed by K nonoverlapping 
groups of N / K input nodes. The output of the committee tree is the majority state 
of the K hidden nodes . The solution in the cavity method minimizes the change 
from the cavity fields {tal to the aligning fields {Aa }, as measured by La(Aa -ta)2 
in the space of correct outputs. Thus for a stability parameter K, Aa = K when 
ta < K and the value of ta is above median among the K hidden nodes, otherwise 
Aa = tao Note that a discontinuity exists in the aligning field function. Now 
suppose ta < K is the median, but the next highest value tb happens to be slightly 
less than ta. Then the addition of example ° may induce a change from tb < ta to 
tbO > taO· Hence AbO changes from tb to K whereas Aao changes from K to taO. The 
adjustment of the system is no longer small, and the previous perturbative analysis 
is not valid. In fact, it has been shown that all networks having a gap in the aligning 
field function are not stable against the addition of examples (Wong, 1995a). 

To consider what happens beyond the stability regime, one has to take into account 
the rough energy landscape of the learning space. Suppose that the original global 
minimum for examples 1 to p is a. After adding example 0, a nonvanishing change 
to the system is induced, and the global minimum shifts to the neighborhood of the 
local minimum 13, as schematically shown in Fig. 1 (b). Hence the resultant aligning 
fields Ag are no longer well-defined functions of the cavity fields tg. Instead they 
are well-defined functions of the cavity fields tg. Nevertheless, one may expect that 
correlations exist between the states a and 13. 

Let ViiO be the correlation between the network states, i.e . (Jj J1) = ViiO. Since 
both states a and 13 are determined in the absence of the added example 0, the 
correlation (tgtg) = ViiO as well. Knowing that both tg and tg obey Gaussian 
distributions, the cavity field distribution can be determined if we know the prior 
distribution of the local minima. 

At this point we introduce the central assumption in the cavity method for rough 
energy landscapes: we assume that the number of local minima at energy E obey 
an exponential distribution d~( E) = C exp( -wE)dE. Similar assumptions have 
been used in specifying the density of states in disordered systems (Mezard, Parisi 
& Virasoro 1987). Thus for single layer networks (and for two layer networks with 
appropriate generalizations), the cavity field ditribution is given by 

P(ti3jt<~) = G(tgltg)exp[-w~E(-\(tg))] (4) 
o 0 J dtgG(tg Itg) exp[-w~E(-\(tg))]' 

where G(tg Itg) is a Gaussian distribution. w is a parameter describing the distri­
bution, and -\(tg) is the aligning field function. The weights J1 are given by 

J1 = (1 - ax)-l ~ 2)-\(t~) - t~]~f. (5) 
I' 

Noting the Gaussian distribution of the cavity fields, self-consistent equations for 
both qo and the local susceptibility 'Y can be derived . 
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To determine the distribution of local minima, namely the parameters C and w, 
we introduce a "free energy" F(p, N) for p examples and N input nodes, given 
by d~(E) = exp[w(F(p, N) - E)]dE. This "free energy" determines the averaged 
energy of the local minima and should be an extensive quantity, i.e. it should scale 
as the system size. Cavity arguments enable us to find an expression F (p + 1, N) -
F(p, N). Similarly, we may consider a cavity argument for the addition of one input 
node, expanding the network size from N to N + l. This yields an expression for 
F(p, N + 1) - F(p, N). Since F is an extensive quantity, F(p, N) should scale as N 
for a given ratio 0' = p/ N. This implies 

F 
N = O'(F(p + 1, N) - F(p, N)) + (F(p, N + 1) - F(p, N)). (6) 

We have thus obtained an expression for the averaged energy of the local minima. 
Minimizing the free energy with respect to the parameter w gives a self-consistent 
equation. 

The three equations for qo, 'Y and w completely determines the model. The macro­
scopic properties of the neural network, such as the storage capacity, can be derived, 
and the results are identical to the first step replica symmetry breaking solution in 
the replica method. 

It remains to check whether the microscopic equations have been modified due to 
the roughening of the energy landscape. It turns out that while the cavity fields in 
the initial state 0' do not satisfy the microscopic equations (2), those at the final 
metastable state {3 do, except that the nonlocal susceptibility X has to be replaced 
by its average over the distribution of the local minima. In fact, the nonlocal 
susceptibility describes the reactive effects due to the background examples, which 
adjust on the addition of the new example. (Technically, this is called the Onsager 
reaction.) The adjustments due to hopping between valleys in a rough energy 
landscape have thus been taken into account. 

4 SIMULATION RESULTS 

To verify the theory, I simulate a committee tree learning random examples . Learn­
ing can be done by the more conventional Least Action algorithm (Nilsson 1965), 
or by iterating the microscopic equations. 

We verify that the Least Action algorithm yields an aligning field function ..\(t) 
consistent with the cavity theory. Suppose the weights from input j to hidden node 
a is given by Jaj = 2:1' xal'~j /..IN. Comparing with Jaj = (1- O'X)-l 2:1'(Aal' -

tal')~j /..IN, we estimate the nonlocal susceptibility X by requiring the distribution 
of tal' == Aal' - (1 - O'X)xal' to have a zero first moment. tal' is then an estimate of 
tal" Fig. 2 shows the resultant relation between Aal' and tal" It agrees with the 
predictions of the cavity theory. Fig. 3 shows the values of the stability parameter 
K, measured from the Least Action algorithm and the microscopic equations. They 
have better agreement with the predictions of the rough energy landscape (first 
step replica symmetry breaking solution) rather than the smooth energy landscape 
(replica symmetric solution). Note that the microscopic equations yield a higher 
stability than the Least Action algorithm. 
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Figure 2: The aligning fields versus the cavity fields for a branch of the committee 
tree with K = 3, a = 0.8 and N = 600. The dashed line is the prediction of the 
cavity theory for the regime of rough energy landscape. 
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Figure 3: The stability parameter K, versus the storage level a in the committee 
tree with K = 3 for the cavity theory of: (a) smooth energy landscape (dashed 
line), (b) rough energy landscape (solid line), and the simulation of: (c) iterating 
the microscopic equations (circles), (d) the Least Action algorithm (squares). Error 
bars are smaller than the size of the symbols. 

5 CONCLUSION 

In summary, we have derived the microscopic equations for neural network learning 
in the regime of rough energy landscapes. They turn out to have the same form as 
in the case of smooth energy landscape, except that the parameters are averaged 
over the distribution of local minima. Iterating the equations result in a learning 
algorithm, which yields a higher stability than more conventional algorithms in the 
committee tree. However , for high loading, the iterations may not converge. 
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The success of the present scheme lies its ability to take into account the underlying 
physical picture of many local minima of comparable energy. It correctly describes 
the experience that slightly different training sets may lead to vastly different neural 
networks. The stability parameter predicted by the rough landscape ansatz has a 
better agreement with simulations than the smooth one. It provides a physical 
interpretation of the replica symmetry breaking solution in the replica method. It 
is possible to generalize the theory to the physical picture with hierarchies of clusters 
of local minima, which corresponds to the infinite step replica symmetry breaking 
solution, though the mathematics is much more involved. 
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