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Abstract 

In this paper we propose a method for learning Bayesian belief 
networks from data. The method uses artificial neural networks 
as probability estimators, thus avoiding the need for making prior 
assumptions on the nature of the probability distributions govern
ing the relationships among the participating variables. This new 
method has the potential for being applied to domains containing 
both discrete and continuous variables arbitrarily distributed. We 
compare the learning performance of this new method with the 
performance of the method proposed by Cooper and Herskovits 
in [7]. The experimental results show that, although the learning 
scheme based on the use of ANN estimators is slower, the learning 
accuracy of the two methods is comparable. 
Category: Algorithms and Architectures. 

1 Introduction 

Bayesian belief networks (BBN) are a powerful formalism for representing and rea
soning under uncertainty. This representation has a solid theoretical foundation 
[13], and its practical value is suggested by the rapidly growing number of areas to 
which it is being applied. BBNs concisely represent the joint probability distribution 
over a set of random variables, by explicitly identifying the probabilistic dependen
cies and independencies between these variables. Their clear semantics make BBNs 
particularly. suitable for being used in tasks such as diagnosis, planning, and control. 

The task of learning a BBN from data can usually be formulated as a search 
over the space of network structures, and as the subsequent search for an opti
mal parametrization of the discovered structure or structures. The task can be 
further complicated by extending the search to account for hidden variables and for 
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the presence of data points with missing values. Different approaches have been 
successfully applied to the task of learning probabilistic networks from data [5]. 
In all these approaches, simplifying assumptions are made to circumvent practi
cal problems in the implementation of the theory. One common assumption that 
is made is that all variables are discrete, or that all variables are continuous and 
normally distributed. 

In this paper, we propose a novel method for learning BBNs from data that makes 
use of artificial neural networks (ANN) as probability distribution estimators, thus 
avoiding the need for making prior assumptions on the nature of the probability 
distribution governing the relationships among the participating variables. The use 
of ANNs as probability distribution estimators is not new [3], and its application to 
the task of learning Bayesian belief networks from data has been recently explored 
in [11] . However, in [11] the ANN estimators were used in the parametrization of the 
BBN structure only, and cross validation was the method of choice for comparing 
different network structures. In our approach, the ANN estimators are an essential 
component of the scoring metric used to search over the BBN structure space. We 
ran several simulations to compare the performance of this new method with the 
learning method described in [7]. The results show that, although the learning 
scheme based on the use of ANN estimators is slower, the learning accuracy of the 
two methods is comparable. 

The rest of the paper is organized as follows. In Section 2 we briefly introduce 
the Bayesian belief network formalism and some basics of hbw to learn BBNs from 
data. In Section 3, we describe our learning method, and detail the use of artificial 
neural networks as probability distribution estimators. In Section 4 we present some 
experimental results comparing the performance of this new method with the one 
proposed in [7]. We conclude the paper with some suggestions for further research. 

2 Background 

A Bayesian belief network is defined by a triple (G,n,p), where G = (X,E) is 
a directed acyclic graph with a set of nodes X = {Xl"'" xn} representing do
main variables, and with a set of arcs E representing probabilistic dependencies 
among domain variables; n is the space of possible instantiations of the domain 
variables l ; and P is a probability distribution over the instantiations in n. Given 
a node X EX, we use trx to denote the set of parents of X in X. The essential 
property of BBNs is summarized by the Markov condition, which asserts that each 
variable is independent of its non-descendants given its parents. This property al
lows for the representation of the multivariate joint probability distribution over 
X in terms of the univariate conditional distributions P( Xi l7ri, 8i ) of each variable 
Xi given its parents 7ri, with 8i the set of parameters needed to fully characterize 
the conditional probability. Application of the chain rule, together with the Markov 
condition, yields the following factorization of the joint probability of any particular 
instantiation of all n variables: 

n 

P(x~, ... , x~) = II P(x~ 17r~., 8i ) . (1) 
i=l 

1 An instantiation w of all n variables in X is an n-uple of values {x~, ... , x~} such that 
Xi = X: for i = 1 ... n. 
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2.1 Learning Bayesian belief networks 

The task of learning BBNs involves learning the network structure and learning 
the parameters of the conditional probability distributions. A well established set 
of learning methods is based on the definition of a scoring metric measuring the 
fitness of a network structure to the data, and on the search for high-scoring network 
structures based on the defined scoring metric [7, 10]. We focus on these methods, 
and in particular on the definition of Bayesian scoring metrics. 

In a Bayesian framework, ideally classification and prediction would be performed 
by taking a weighted average over the inferences of every possible belief network 
containing the domain variables. Since this approach is in general computationally 
infeasible, often an attempt has been made to use a high scoring belief network for 
classification. We will assume this approach in the remainder of this paper. 

The basic idea ofthe Bayesian approach is to maximize the probability P(Bs I V) = 
P(Bs, V)j P(V) of a network structure Bs given a database of cases V. Because 
for all network structures the term P(V) is the same, for the purpose of model 
selection it suffices to calculate PCBs, V) for all Bs. The Bayesian metrics developed 
so far all rely on the following assumptions: 1) given a BBN structure, all cases 
in V are drawn independently from the same distribution (multinomial sample); 
2) there are no cases with missing values (complete database); 3) the parameters 
of the conditional probability distribution of each variable are independent (global 
parameter independence); and 4) the parameters associated with each instantiation 
of the parents of a variable are independent (local parameter independence). 

The application of these assumptions allows for the following factorization of the 
probability PCBs, V) 

n 

PCBs, V) = P(Bs)P(V I Bs) = PCBs) II S(Xi, 71'i, V) , (2) 
i=l 

where n is the number of nodes in the network, and each s( Xi, 71'i, V) is a term 
measuring the contribution of Xi and its parents 71'i to the overall score of the 
network Bs. The exact form of the terms s( Xi 71'i, V) slightly differs in the Bayesian 
scoring metrics defined so far, and for lack of space we refer the interested reader 
to the relevant literature [7, 10]. 

By looking at Equation (2), it is clear that if we assume a uniform prior distribution 
over all network structures, the scoring metric is decomposable, in that it is just 
the product of the S(Xi, 71'i, V) over all Xi times a constant P(Bs). Suppose that 
two network structures Bs and BSI differ only for the presence or absence of a 
given arc into Xi. To compare their metrics, it suffices to compute s( Xi, 71'i, V) 
for both structures, since the other terms are the same. Likewise, if we assume 
a decomposable prior distribution over network structures, of the form P(Bs) = 
11 Pi, as suggested in [10], the scoring metric is still decomposable, since we can 
include each Pi into the corresponding s( Xi, 71'i, V). 

Once a scoring metric is defined, a search for a high-scoring network structure can 
be carried out. This search task (in several forms) has been shown to be NP-hard 
[4,6]. Various heuristics have been proposed to find network structures with a high 
score. One such heuristic is known as K2 [7], and it implements a greedy search over 
the space of network structures. The algorithm assumes a given ordering on the 
variables. For simplicity, it also assumes that no prior information on the network is 
available, so the prior probability distribution over the network structures is uniform 
and can be ignored in comparing network structures. 
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The Bayesian scoring metrics developed so far either assume discrete variables 
[7, 10], or continuous variables normally distributed [9]. In the next section, we 
propose a possible generalization which allows for the inclusion of both discrete and 
continuous variables with arbitrary probability distributions. 

3 An ANN-based scoring metric 

The main idea of this work is to use 'artificial neural networks as probability estima
tors, to define a decomposable scoring metric for which no informative priors on the 
class, or classes, of the probability distributions of the participating variables are 
needed. The first three of the four assumptions described in the previous section 
are still needed, namely, the assumption of a multinomial sample, the assumption of 
a complete database, and the assumption of global parameter independence. How
ever, the use of ANN estimators allows for the elimination of the assumption of 
local parameter independence. In fact, the conditional probabilities corresponding 
to the different instantiations of the parents of a variable are represented by the 
same ANN, and they share the same network weights and the same training data. 

Let us denote with VI == {C1 , .. . , C I - 1 } the set of the first I cases in the database, 
and with x~l) and 7rr) the instantiations of Xi and 7ri in the l-th case respectively. 
The joint probability P( Bs, V) can be written as: 

m 

P(Bs)P(VIBs) = P(Bs) IIp(CIIVI,Bs) 
1=1 

m n 

II II (1) (I) 
P(Bs) P(xi l7ri , VI, Bs). (3) 

1=1 i=l 

If we assume uninformative priors, or decomposable priors on network structures, 
of the form P(Bs) = rt Pi, the probability PCBs, V) is decomposable. In fact, we 
can interchange the two products in Equation 3, so as to obtain 

n m n 

PCBs, V) = II [Pi II p(x~l) l7rr), VI , Bs)] = II S(Xi, 7ri, V), (4) 
1=1 i=l 

where S(Xi, 7rj, V) is the term between square brackets, and it is only a function of 
Xi and its parents in the network structure Bs (Pi can be neglected if we assume 
a uniform prior over the network structures). The computation of Equation 4 
corresponds to the application of the prequential method discussed by Dawid [8]. 

The estimation of each term P( Xi l7ri , VI, Bs) can be done by means of neural 
network. Several schemes are available for training a neural network to approximate 
a given probability distribution, or density. Notice that the calculation of each term 
S(Xi, 7ri, V) can be computationally very expensive. For each node Xi, computing 
S( Xi, 7ri, V) requires the training of mANNs, where m is the size of the database. 
To reduce this computational cost, we use the following approximation, which we 
call the t-invariance approximation: for any I E {I, . .. , m-l}, given the probability 
P(Xi l7ri, VI, Bs), at least t (1 s t S m -I) new cases are needed in order to alter 
such probability. That is, for each positive integer h, such that h < t, we assume 
P(Xi l7rj, VI+h, Bs) = P(Xi l7ri, VI , Bs) . Intuitively, this approximation implies the 
assumption that, given our present belief about the value of each P(Xi l7rj, VI, Bs), 
at least t new cases are needed to revise this belief. By making this approximation, 
we achieve a t-fold reduction in the computation needed, since we now need to build 
and train only mit ANNs for each Xi , instead of the original m. In fact, application 
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of the t-invariance approximatioin to the computation of a given S(Xi, 7ri, 'D) yields: 

Rather than selecting a constant value for t, we can choose to increment t as the 
size of the training database 'DI increases. This approach seems preferable. When 
estimating P(Xi l7ri, 'DI, Bs), this estimate will be very sensitive to the addition of 
new cases when 1 is small, but will become increasingly insensitive to the addition of 
new cases as 1 grows. A scheme for the incremental updating oft can be summarized 
in the equation t = rAil, where 1 is the number of cases already seen (i.e., the 
cardinality of'D/), and 0 < A ~ 1. For example, given a data set of 50 cases, 
the updating scheme t = rO.511 would require the training of the ANN estimators 
P(Xi I 7ri,'DI, Bs) for 1= 1,2,3,5,8,12,18,27,41. 

4 Evaluation 

In this section, we describe the experimental evaluation we conducted to test the 
feasibility of use of the ANN-based scoring metric developed in the previous sec
tion. All the experiments are performed on the belief network Alarm, a multiply
connected network originally developed to model anesthesiology problems that may 
occur during surgery [2]. It contains 37 nodes/variables and 46 arcs. The variables 
are all discrete, and take between 2 and 4 distinct values. The database used in the 
experiments was generated from Alarm, and it is the same database used in [7]. 

In the experiments, we use a modification of the algorithm K2 [7]. The modified 
algorithm, which we call ANN-K2, replaces the closed-form scoring metric developed 
in [7] with the ANN-based scoring metric of Equation (5). The performance of ANN
K2 is measured in terms of accuracy of the recovered network structure, by counting 
the number of edges added and omitted with respect to the Alarm network; and in 
terms of the accuracy of the learned joint probability distribution, by computing 
its cross entropy with respect to the joint probability distribution of Alarm. The 
learning performance of ANN-K2 is also compared with the performance of K2. To 
train the ANNs, we used the conjugate-gradient search algorithm [12]. 

Since all the variables in the Alarm network are discrete, the ANN estimators are 
defined based on the softmax model,with normalized exponential output units, and 
with cross entropy as cost function . As a regularization technique, we augment the 
training set so as to induce a uniform conditional probability over the unseen instan
tiantions of the ANN input. Given the probability P(Xi l7ri, 'DI) to be estimated, 
and assuming Xi is a k-valued variable, for each instantiation 7r~ that does not ap
pear in the database D I , we generate k new cases, with 7ri instantiated to 7ri, and Xi 
taking each of its k values. As a result, the neural network estimates P(Xi 17r~, 'DI) 
to be uniform, with P(Xi I7rL 'D/) = l/k for each of Xi'S values Xn,.··, Xlk. 

We ran simulations where we varied the size of the training data set (100, 500, 
1000, 2000, and 3000 cases), and the value of A in the updating scheme t = rAil 
described in Section 3. We used the settings A = 0.35, and A = 0.5 . For each 
run, we measured the number of arcs added, the number of arcs omitted, the cross 
entropy, and the computation time, for each variable in the network. That is, we 
considered each node, together with its parents, as a simple BBN, and collected the 
measures of interest for each of these BBNs. Table 1 reports mean and standard 
deviation of each measure over the 37 variables of Alarm, for both ANN-K2 and 
K2. The results for ANN-K2 shown in Table 1 correspond to the setting A = 0.5, 
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Uata Algo. arcs + arcs - cross entropy time (sees) 
set m s.d. m s.d. m med s.d. m med s.d. 
100 ANN-K2 0.19 0 .40 0 .62 0 .86 0.23 .051 0 .52 130 88 159 

K2 0 .75 1.28 0 . 22 0.48 0.08 .070 0 .10 0.44 .06 1.48 
500 ANN-K2 0.19 0.40 0.22 0 .48 0 .04 .010 0 .11 1077 480 1312 

K2 0.22 0.42 0.11 0 .31 0 .02 .010 0 .02 0.13 .06 0 .22 
1000 ANN·K2 0 .24 0.49 0.22 0 .48 0 .05 .005 0 .15 6909 4866 6718 

K2 0.11 0.31 0.03 0.16 0.01 .006 0 .01 0.34 .23 0 .46 
2000 ANN·K2 0.19 0.40 0.11 0 .31 0.02 .002 0 .06 6458 4155 7864 

K2 0 .05 0.23 0 .03 0.16 0.005 .002 0.007 0 .46 .44 0 .65 
3000 ANN-K2 0.16 0.37 0.05 0 .23 0 .01 .001 0 .017 11155 4672 2136 

K2 0 .00 0 .00 0.03 0 .16 0.004 .001 0 .005 1.02 .84 1.11 

Table 1: Comparison ofthe performance of ANN-K2 and of K2 in terms of number of arcs 
wrongly added (+), number of arcs wrongly omitted (-), cross entropy, and computation 
time. Each column reports the mean m , the median med, and the standard deviation s.d. 
of the corresponding measure over the 37 nodes/variables of Alarm. The median for the 
number of arcs added and omitted is always 0, and is not reported. 

since their difference from the results corresponding to the setting A = 0.35 was not 
statistically significant . 

Standard t-tests were performed to assess the significance of the difference between 
the measures for K2 and the measures for ANN-K2, for each data set cardinality. 
No technique to correct for multiple-testing was applied. Most measures show no 
statistically significant difference, either at the 0.05 level or at the 0.01 level (most p 
values are well above 0.2). In the simulation with 100 cases, both the difference be
tween the mean number of arcs added and the difference between the mean number 
of arcs omitted are statistically significant (p ~ 0.01). However, these differences 
cancel out, in that ANN-K2 adds fewer extra arcs than K2, and K2 omits fewer 
arcs than ANN-K2. This is reflected in the corresponding cross entropies, whose 
difference is not statistically significant (p = 0.08). In the simulation with 1000 
cases, only the difference in the number of arcs omitted is statistically significant 
(p ~ .03) . Finally, in the simulation with 3000 cases, only the difference in the 
number of arcs added is statistically significant (p ~ .02). K2 misses a single are, 
and does not add any extra are, and this is the best result to date. By comparison, 
ANN-K2 omits 2 arcs, and adds 5 extra arcs. For the simulation with 3000 cases, 
we also computed Wilcoxon rank sum tests . The results were consistent with the 
t-test results, showing a statistically significant difference only in the number of arcs 
added. Finally, as it can be noted in Table 1, the difference in computation time is 
of several order of magnitude, thus making a statistical analysis superfluous. 

A natural question to ask is how sensitive is the learning procedure to the order 
of the cases in the training set. Ideally, the procedure would be insensitive to 
this order. Since we are using ANN estimators, however, which perform a greedy 
search in the solution space, particular permutations of the training cases might 
cause the ANN estimators to be more susceptible to getting stuck in local maxima. 
We performed some preliminary experiments to test the sensitivity of the learning 
procedure to the order of the cases in the training set. We ran few simulations in 
which we randomly changed the order of the cases. The recovered structure was 
identical in all simulations. Morevoer, the difference in cross entropy for different 
orderings of the cases in the training set showed not to be statistically significant. 

5 Conclusions 

In this paper we presented a novel method for learning BBN s from data based on the 
use of artificial neural networks as probability distribution estimators. As a prelim-
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inary evaluation, we have compared the performance of the new algorithm with the 
performance of K2, a well established learning algorithm for discrete domains, for 
which extensive empirical evaluation is available [1,7]. With regard to the learning 
accuracy of the new method, the results are encouraging, being comparable to state
of-the-art results for the chosen domain. The next step is the application of this 
method to domains where current techniques for learning BBNs from data are not 
applicable, namely domains with continuous variables not normally distributed, and 
domains with mixtures of continuous and discrete variables. The main drawback of 
the new algorithm is its time requirements. However, in this preliminary evaluation, 
our main concern was the learning accuracy of the algorithm, and little effort was 
spent in trying to optimize its time requirements. We believe there is ample room 
for improvement in the time performance of the algorithm. More importantly, the 
scoring metric of Section 3 provides a general framework for experimenting with 
different classes of probability estimators. In this paper we used ANN estimators, 
but more efficient estimators can easily be adopted, especially if we assume the 
availability of prior information on the class of probability distributions to be used. 
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