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Abstract 

Prediction, estimation, and smoothing are fundamental to signal 
processing. To perform these interrelated tasks given noisy data, 
we form a time series model of the process that generates the 
data. Taking noise in the system explicitly into account, maximum
likelihood and Kalman frameworks are discussed which involve the 
dual process of estimating both the model parameters and the un
derlying state of the system. We review several established meth
ods in the linear case, and propose severa! extensions utilizing dual 
Kalman filters (DKF) and forward-backward (FB) filters that are 
applicable to neural networks. Methods are compared on several 
simulations of noisy time series. We also include an example of 
nonlinear noise reduction in speech. 

1 INTRODUCTION 

Consider the general autoregressive model of a noisy time series with both process 
and additive observation noise: 

x(k) 

y(k) 
I(x(k - 1), ... x(k - M), w) + v(k - 1) 

x(k) + r(k), 

(1) 
(2) 

where x(k) corresponds to the true underlying time series driven by process noise 
v(k), and 10 is a nonlinear function of past values of x(k) parameterized by w. 
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The only available observation is y(k) which contains additional additive noise r(k) . 
Prediction refers to estimating an x(k) given past observations. (For purposes of 
this paper we will restrict ourselves to univariate time series.) In estimation, x(k) 
is determined given observations up to and including time k. Finally, smoothing 
refers to estimating x(k) given all observations, past and future. 

The minimum mean square nonlinear prediction of x(k) (or of y(k)) can be writ
ten as the conditional expectation E[x(k)lx(k - 1)], where x(k) = [x(k), x(k -
1),· .. x(O)] . If the time series x(k) were directly available, we could use this data 
to generate an approximation of the optimal predictor. However, when x(k) is not 
available (as is generally the case), the common approach is to use the noisy data 
directly, leading to an approximation of E[y(k)ly(k -1)] . However, this results in a 
biased predictor: E[y(k)ly(k-l)] = E[x(k)lx(k -1) +R(k -1)] i= E[x(k)lx(k-l)]. 

We may reduce the above bias in the predictor by exploiting the knowledge that 
the observations y(k) are measurements arising from a time series. Estimates x(k) 
are found (either through estimation or smoothing) such that Ilx(k) - x(k)11 < 
II x (k ) - y( k) II. These estimates are then used to form a predictor that approximates 
E[x(k)lx(k - 1)].1 

In the remainder of this paper, we will develop methods for the dual estimation of 
both states x and weights Vi. We show how a maximum-likelihood framework can 
be used to relate several existing algorithms and how established linear methods 
can be extended to a nonlinear framework. New methods involving the use of dual 
Kalman filters are also proposed and experiments are provided to compare results. 

2 DUAL ESTIMATION 

Given only noisy observations y(k), the dual estimation problem requires considera
tion of both the standard prediction (or output) errors ep(k) = y(k) - f(ic.(k-1)' w) 
as well as the observation (or input) errors eQ(k) = y(k) - x(k) . The minimum ob
servation error variance equals the noise variance 0'; . The prediction error, however, 
is correlated with the observation error since y(k) - f(x(k - 1)) = r(k - 1) + v(k), 
and thus has a minimum variance of 0'; + 0';. Assuming the errors are Gaussian, 
we may construct a log-likelihood function which is proportional to eT:E-1e, where 
eT = [eQ(O), eQ(l) .... eQ(N), ep(M), ep(M + 1), .. . ep(N)], a vector of all errors up to 
time N, and o o 

o 

(3) 

Minimization of the log-likelihood function leads to the maximum-likelihood esti
mates for both x(k) and w. (Although we may also estimate the noise variances 0'; 
and 0';, we will assume in this paper that they are known.) Two general frameworks 
for optimization are available: 

lBecause models are trained on estimated data x(k), it is important that estimated 
data still be used for prediction of out-of training set (on-line) data. In other words, if our 
model was formed as an approximation of E[x(k)lx(k - 1)], then we should not provide it 
with y(k - 1) as an input in order to avoid a model mismatch. 
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2.1 Errors-In-Variables (EIV) Methods 

This method comes from the statistics literature for nonlinear regression (see Seber 
and Wild, 1989), and involves batch optimization of the cost function in Equation 
3. Only minor modifications are made to account for the time series model. These 
methods, however, are memory intensive (E is approx. 2N >< 2N) and also do not 
accommodate new data in an efficient manner. Retraining is necessary on all the 
data in order to produce estimates for the new data points. 

If we ignore the cross correlation between the prediction and observation error, then 
E becomes a diagonal matrix and the cost function may be expressed as simply 
2::=1 "Ye~(k) + e~(k), with "Y = (J';/((J'; + (J';). This is equivalent to the Gleaming 
(CLRN) cost function (Weigend, 1995), developed as a heuristic method for cleaning 
the inputs in neural network modelling problems. While this allows for stochastic 
optimization, the assumption in the time series formulation may lead to severely 
biased results. Note also that no estimate is provided for the last point x(N). 

When the model/ = wT x is known and linear, EIV reduces to a standard (batch) 
weighted least squares procedure which can be solved in closed form to generate 
a maximum-likelihood estimate of the noise free time series. However, when the 
linear model is unknown, the problem is far more complicated. The inner product 
of the parameter vector w with the vector x( k - 1) indicates a bilinear relationship 
between these unknown quantities. Solving for x( k) requires knowledge of w, while 
solving for w requires x(k). Iterative methods are necessary to solve the nonlin
ear optimization, and a Newton's-type batch method is typically employed. An 
EIV method for nonlinear models is also readily developed, but the computational 
expense makes it less practical in the context of neural networks. 

2.2 Kalman Methods 

Kalman methods involve reformulation of the problem into a state-space framework 
in order to efficiently optimize the cost function in a recursive manner. At each time 
point, an optimal estimation is achieved by combining both a prior prediction and 
new observation. Connor (1994), proposed using an Extended Kalman filter with a 
neural network to perform state estimation alone. Puskorious and Feldkamp (1994) 
and others have posed the weight estimation in a state-space framework to allow 
Kalman training of a neural network. Here we extend these ideas to include the 
dual Kalman estimation of both states and weights for efficient maximum-likelihood 
optimization. We also introduce the use offorward-backward in/ormation filters and 
further explicate relationships to the EIV methods. 

A state-space formulation of Equations 1 and 2 is as follows: 

where 

x(k) 
y(k) 

[ 
x(k) 1 x(k - 1) 

x(k) = . 

~(k - M + 1) 

= F[x(k - 1)] + Bv(k - 1) 
= Cx(k) + r(k) 

[ 

f(x(k), ... , x(k - M + 1), w) 1 
F[x(k)] = ~(k) 

x(k - M + 2) 

(4) 
(5) 

B = [ il' (6) 
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and C = BT. If the model is linear, then f(x(k)) takes the form wT x(k), and 
F[x(k)] can be written as Ax(k), where A is in controllable canonical form. 

If the model is linear, and the parameters ware known, the Kalman filter (KF) 
algorithm can be readily used to estimate the states (see Lewis, 1986). At each 
time step, the filter computes the linear least squares estimate x(k) and prediction 
x-(k), as well as their error covariances, Px(k) and P.;(k). In the linear case with 
Gaussian statistics, the estimates are the minimum mean square estimates. With 
no prior information on x, they reduce to the maximum-likelihood estimates. 

Note, however, that while the Kalman filter provides the maximum-likelihood es
timate at each instant in time given all past data, the EIV approach is a batch 
method that gives a smoothed estimate given all data. Hence, only the estimates 
x(N) at the final time step will match. An exact equivalence for all time is achieved 
by combining the Kalman filter with a backwards information filter to produce a 
forward-backward (FB) smoothing filter (Lewis, 1986).2 Effectively, an inverse co
variance is propagated backwards in time to form backwards state estimates that 
are combined with the forward estimates. When the data set is large, the FB filter 
offers Significant computational advantages over the batch form. 

When the model is nonlinear, the Kalman filter cannot be applied directly, but 
requires a linearization of the nonlinear model at the each time step. The resulting 
algorithm is known as the extended Kalman filter (EKF) and effectively approxi
mates the nonlinear function with a time-varying linear one. 

2.2.1 Batch Iteration for Unknown Models 

Again, when the linear model is unknown, the bilinear relationship between the time 
series estimates, X, and the weight estimates, Vi requires an iterative optimization. 
One approach (referred to as LS-KF) is to use a Kalman filter to estimate x(k) with 
Vi fixed, followed by least-squares optimization to find Vi using the current x( k). 
Specifically, the parameters are estimated as Vi = (X~FXKF) -1 XKFY, where XKF 
is a matrix of KF state estimates, and Y is a 1 x N vector of observations. 

For nonlinear models, we use a feedforward neural network to approximate f(·), and 
replace the LS and KF procedures by backpropagation and extended Kalman filter
ing, respectively (referred to here as BP-EKF, see Connor 1994). A disadvantage 
of this approach is slow convergence, due to keeping a set of inaccurate estimates 
fixed at each batch optimization stage. 

2.2.2 Dual Kalman Filter 

Another approach for unknown models is to concatenate both wand x into a joint 
state vector. The model and time series are then estimated simultaneously by 
applying an EKF to the nonlinear joint state equations (see Goodwin and Sin, 1994 
for the linear case). This algorithm, however, has been known to have convergence 
problems. 

An alternative is to construct a separate state-space formulation for the underlying 
weights as follows: 

w(k) 
y(k) 

w(k -1) 
= f(ic.(k - 1), w(k)) + n(k), 

(7) 

(8) 

2 A slight modification of the cost in Equation 3 is necessary to account for initial 
conditions in the Kalman form. 
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where the state transition is simply an identity matrix, and f(x(k-1), w(k)) plays 
the role of a time-varying nonlinear observation on w. 

When the unknown model is linear, the observation takes the form x(k _1)Tw(k). 
Then a pair of dual Kalman filters (DKF) can be run in parallel, one for state 
estimation, and one for weight estimation (see Nelson, 1976) . At each time step, 
all current estimates are used. The dual approach essentially allows us to separate 
the non-linear optimization into two linear ones. Assumptions are that x and w 
remain uncorrelated and that statistics remain Gaussian. Note, however, that the 
error in each filter should be accounted for by the other. We have developed several 
approaches to address this coupling, but only present one here for the sake of brevity. 
In short, we write the variance of the noise n( k) as 0 p~ (k )OT + (J'; . in Equation 
8, and replace v(k - 1) by v(k - 1) + (w(k)T - wT(k))x(k - 1) in Equation 4 for 
estimation of x(k). Note that the ability to couple statistics in this manner is not 
possible in the batch approaches. 

We further extend the DKF method to nonlinear neural network models by in
troducing a dual extended Kalman filtering method (DEKF) . This simply requires 
that Jacobians of the neural network be computed for both filters at each time step. 
Note, by feeding x(k) into the network, we are implicitly using a recurrent network. 

2.2.3 Forward-Backward Methods 

All of the Kalman methods can be reformulated by using forward-backward (FB) 
Kalman filtering to further improve state smoothing. However, the dual Kalman 
methods require an interleaving of the forward and backward state estimates in 
order to generate a smooth update at each time step. In addition, using the FB 
estimates requires caution because their noncausal nature can lead to a biased w 
if they are used improperly. Specifically, for LS-FB the weights are computed as: 
w = (XRFXFB)-lXKFY ,where XFB is a matrix of FB (smooth) state estimates. 
Equivalent adjustments are made to the dual Kalman methods. Furthermore, a 
model of the time-reversed system is required for the nonlinear case. The explication 
and results of these algorithms will be appear in a future publication. 

3 EXPERIMENTS 

Table 1 compares the different approaches on two linear time series, both when 
the linear model is known and when it is unknown. The least square (LS) estima
tion for the weights in the bottom row represents a baseline performance wherein 
no noise model is used. In-sample training set predictions must be interpreted 
carefully as all training set data is being used to optimize for the weights. We 
see that the Kalman-based methods perform better out of training set (recall the 
model-mismatch issue l ). Further, only the Kalman methods allow for on-line es
timations (on the test set, the state-estimation Kalman filters continue to operate 
with the weight estimates fixed). The forward-backward method further improves 
performance over KF methods. Meanwhile, the clearning-equivalent cost function 
sacrifices both state and weight estimation MSE for improved in-sample prediction; 
the resulting test set performance is significantly worse. 

Several time series were used to compare the nonlinear methods, with the results 
summarized in Table 2. Conclusions parallel those for the linear case. Note, the 
DEKF method performed better than the baseline provided by standard backprop-
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Table 1: Comparison of methods for two linear models 
Model Known 

Tram 1 Test 1 Tram 2 Test 2 
Est. Pred. Est. Pred. w J:<;st. Pred. J:<;st. Pred. 
.094 .322 - 1.09 - .165 .558 - 1.32 
.203 .134 - 1.08 - .343 .342 - 1.32 
.134 .559 .132 0.59 - .197 .778 .221 0.85 
.094 .559 .132 0.59 - .165 .778 .221 0.85 

Model Unknown 
Est. Pred. Est. Pred. w Est. Pred. Est. Pred. 

.172 .545 - 1.81 

.278 .049 - 14.1 
.138 .563 .139 .605 .134 .197 .778 .226 0.85 
.099 .347 .136 .603 .281 .169 .612 .229 0.89 
.135 .557 .133 .595 .212 .198 .779 .221 .863 
.096 .329 .134 .596 .187 .165 .587 .221 .859 

- .886 - 1.09 .612 - 1.08 - 1.32 

w 
-
-
-
-

w 
.122 
11.28 
.325 
.369 
.149 
.065 

0.590 

MSE values for estimation (Est.), prediction (Pred.) and weights (w) (normalized to 
signal var.). 1 - AR(ll) model, (1'; = 4, (1'; = 1. 2000 training samples, 1000 testing 
samples. EIV and CLRN were not computed for the unknown model due to memory 
constraints. 2 - AR(5) model, (1'; = .7., (1'; = .5., 375 training, 125 testing. 

Table 2: Comparison of methods on nonlinear time series 
NNet 1 NNet 2 NNet 3 

Tram Test Tram Test Tram Test 
Es. Pro Es . Pro Es. Pro Es. Pro Es. Pro Es. Pro 

BP-EKF .17 . 58 .15 .63 .08 .31 .08 .33 .16 .59 .17 .59 
DEKF .14 .57 .13 .59 .07 .30 .06 .32 .14 .56 .14 .55 

BP .95 .57 .95 .69 .22 .30 .29 .36 .92 .68 .92 .68 

The series Nnet 1,2,3 are generated by autoregressive neural networks which exhibit limit 
cycle and chaotic behavior. (1'; = .16, (1'; = .81, 2700 training samples, 1300 testing 
samples. All network models fit using 10 inputs and 5 hidden units. Cross-validation 
was not used in any of the methods. 

agation (wherein no model of the noise is used). The DEKF method exhibited fast 
convergence, requiring only 10-20 epochs for training. A DEFB method is under 
development. 

The DEKF was tested on a speech signal corrupted with simulated bursting white 
noise (Figure 1). The method was applied to successive 64ms (512 point) windows 
of the signal, with a new window starting every 8ms (64 points). The results in 
the figure were computed assuming both (1'; and (1'; were known. The average 
SNR is improved by 9.94 dB. We also ran the experiment when (1'; and (1'; were 
estimated using only the noisy signal (Nelson and Wan, 1997), and acheived an SNR 
improvement of 8.50 dB. In comparison, available "state-of-the-art" techniques of 
spectral subtraction (Boll, 1979) and RASTA processing (Hermansky et al., 1995), 
achieve SNR improvements of only .65 and 1.26 dB, respectively. We extend the 
algorithms to the colored noise case in a second paper (Nelson and Wan, 1997). 

4 CONCLUSIONS 

We have described various methods under a Kalman framework for the dual estima
tion of both states and weights of a noisy time series. These methods utilize both 
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Clean Speech 

Noise 

Noisy Speech 

IIIIiII Cleaned Speech 

-1Itf .... , ~. t .... ~ • ..------il'" ? ... -'" 
Figure 1: Cleaning Noisy Speech With The DEKF. 33,000 pts (5 sec.) shown. 

process and observation noise models to improve estimation performance. Work 
in progress includes extensions for colored noise, blind signal separation, forward
backward filtering, and noise estimation. While further study is needed, the dual 
extended Kalman filter methods for neural network prediction, estimation, and 
smoothing offer potentially powerful new tools for signal processing applications. 
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