
Stable Fitted Reinforcement Learning

Geoffrey J. Gordon
Computer Science Department

Carnegie Mellon University
Pittsburgh PA 15213
ggordon@cs.cmu.edu

Abstract

We describe the reinforcement learning problem, motivate algo
rithms which seek an approximation to the Q function, and present
new convergence results for two such algorithms.

1 INTRODUCTION AND BACKGROUND

Imagine an agent acting in some environment. At time t, the environment is in some
state Xt chosen from a finite set of states. The agent perceives Xt, and is allowed to
choose an action at from some finite set of actions. The environment then changes
state, so that at time (t + 1) it is in a new state Xt+1 chosen from a probability
distribution which depends only on Xt and at. Meanwhile, the agent experiences a
real-valued cost Ct, chosen from a distribution which also depends only on Xt and
at and which has finite mean and variance.

Such an environment is called a Markov decision process, or MDP. The reinforce
ment learning problem is to control an MDP to minimize the expected discounted
cost Lt ,tCt for some discount factor, E [0,1]. Define the function Q so that
Q(x, a) is the cost for being in state x at time 0, choosing action a, and behaving
optimally from then on. If we can discover Q, we have solved the problem: at each
step, we may simply choose at to minimize Q(xt, at). For more information about
MDPs, see (Watkins, 1989, Bertsekas and Tsitsiklis, 1989).

We may distinguish two classes of problems, online and offline. In the offline prob
lem, we have a full model of the MDP: given a state and an action, we can describe
the distributions of the cost and the next state. We will be concerned with the
online problem, in which our knowledge of the MDP is limited to what we can dis
cover by interacting with it. To solve an online problem, we may approximate the
transition and cost functions, then proceed as for an offline problem (the indirect
approach); or we may try to learn the Q function without the intermediate step
(the direct approach). Either approach may work better for any given problem: the

Stable Fitted Reinforcement Learning 1053

direct approach may not extract as much information from each observation, but
the indirect approach may introduce additional errors with its extra approximation
step. We will be concerned here only with direct algorithms.

Watkins' (1989) Q-Iearning algorithm can find the Q function for small MDPs,
either online or offline. Convergence with probability 1 in the online case
was proven in (Jaakkola et al., 1994, Tsitsiklis, 1994). For large MDPs, ex
act Q-Iearning is too expensive: representing the Q function requires too much
space. To overcome this difficulty, we may look for an inexpensive approxima
tion to the Q function. In the offline case, several algorithms for this purpose
have been proven to converge (Gordon, 1995a, Tsitsiklis and Van Roy, 1994,
Baird, 1995). For the online case, there are many fewer provably convergent al
gorithms. As Baird (1995) points out, we cannot even rely on gradient descent for
large, stochastic problems, since we must observe two independent transitions from
a given state before we can compute an unbiased estimate of the gradient . One
of the algorithms in (Tsitsiklis and Van Roy, 1994), which uses state aggregation
to approximate the Q function, can be modified to apply to online problems; the
resulting algorithm, unlike Q-Iearning, must make repeated small updates to its
control policy, interleaved with comparatively lengthy periods of evaluation of the
changes. After submitting this paper, we were advised of the paper (Singh et al.,
1995), which contains a different algorithm for solving online MDPs. In addition,
our newer paper (Gordon, 1995b) proves results for a larger class of approximators.

There are several algorithms which can handle restricted versions of the online
problem. In the case of a Markov chain (an MDP where only one action is available
at any time step), Sutton's TD('\') has been proven to converge for arbitrary linear
approximators (Sutton, 1988, Dayan, 1992). For decision processes with linear
transition functions and quadratic cost functions (the so-called linear quadratic
regulation problem), the algorithm of (Bradtke, 1993) is guaranteed to converge.
In practice, researchers have had mixed success with approximate reinforcement
learning (Tesauro, 1990, Boyan and Moore, 1995, Singh and Sutton, 1996).

The remainder of the paper is divided into four sections. In section 2, we summarize
convergence results for offline Q-Iearning, and prove some contraction properties
which will be useful later. Section 3 extends the convergence results to online
algorithms based on TD(O) and simple function approximators. Section 4 treats
nondiscounted problems, and section 5 wraps up.

2 OFFLINE DISCOUNTED PROBLEMS

Standard offline Q-Iearning begins with an MDP M and an initial Q fUnction q(O) .

Its goal is to learn q(n), a good approximation to the optimal Q function for M. To
accomplish this goal, it performs the series of updates q(i+1) = TM(q(i»), where the
component of TM(q(i») corresponding to state x and action a is defined to be

[T ((i))] - ~ p . (i)
M q xa = Cxa + "t ~ xay mln qyb

y

Here Cxa is the expected cost of performing action a in state x; Pxay is the probability
that action a from state x will lead to state y; and"t is the discount factor.

Offline Q-Iearning converges for discounted MDPs because TM is a contraction in
max norm. That is, for all vectors q and r,

II TM(q) - TM(r) II ~ "til q - r II
where II q 1\ == maxx,a I qxa I· Therefore, by the contraction mapping theorem, TM
has a unique fixed point q* , and the sequence q(i) converges linearly to q* .

1054 G.J.OORDON

It is worth noting that a weighted version of offline Q-Iearning is also guaranteed
to converge. Consider the iteration

q(i+l) = (I + aD(TM - I))(q(i))

where a is a positive learning rate and D is an arbitrary fixed nonsingular diagonal
matrix of weights. In this iteration, we update some Q valnes more rapidly than
others, as might occur if for instance we visited some states more frequently than
others. (We will come back to this possibility later.) This weighted iteration is a
max norm contraction, for sufficiently small a: take two Q functions q and r, with
II q - r II = I. Suppose a is small enough that the largest element of aD is B < 1,
and let b > 0 be the smallest diagonal element of aD. Consider any state x and
action a, and write dxa for the corresponding element of aD. We then have

[(1 - aD)q - (1 - aD)r]xa

[TMq - TMr]xa
[aDTMq - aDTMr]xa

[(I - aD + aDTM)q - (1 - aD + aDTM)r]xa

< (1 - dxa)1
< ,I

< dxa,l
< (1 - dxa)1 + dxa,l
< (l-b(l-,))1

so (1 - aD + aDTM) is a max norm contraction with factor (1 - b(l - ,)). The
fixed point of weighted Q-Iearning is the same as the fixed point of unweighted
Q-Iearning: TM(q*) = q* is equivalent to aD(TM - l)q* = O.

The difficulty with standard (weighted or unweighted) Q-Iearning is that, for MDPs
with many states, it may be completely infeasible to compute TM(q) for even one
value of q. One way to avoid this difficulty is fitted Q-Iearning: if we can find
some function MA so that MA 0 TM is much cheaper to compute than TM, we can
perform the fitted iteration q(Hl) = MA(TM(q(i))) instead of the standard offline Q
learning iteration. The mapping MA implements a function approximation scheme
(see (Gordon, 1995a)); we assume that qeD) can be represented as MA(q) for some
q. The fitted offline Q-Iearning iteration is guaranteed to converge to a unique fixed
point if MA is a nonexpansion in max norm, and to have bounded error if MA(q*)
is near q* (Gordon, 1995a).

Finally, we can define a fitted weighted Q-Iearning iteration:

q(Hl) = (1 + aMAD(TM - I))(q(i))

If MA is a max norm nonexpansion and M1 = MA (these conditions are satisfied,
for example, by state aggregation), then fitted weighted Q-Iearning is guaranteed
to converge:

((1 - MA) + MA(1 + aD(TM - I)))q
MA(1 + aD(TM - 1)))q

since MAq = q for q in the range of MA. (Note that q(i+l) is guaranteed to be in the
range of MA if q(i) is.) The last line is the composition of a max norm nonexpansion
with a max norm contraction, and so is a max norm contraction.

The fixed point of fitted weighted Q-Iearning is not necessarily the same as the fixed
point of fitted Q-Iearning, unless MA can represent q* exactly. However, if MA is
linear, we have that

(1 + aMAD(TM - I))(q + c) = c + MA(I + aD(TM - I)))(q + c)

for any q in the range of MA and c perpendicular to the range of MA. In particular,
if we take c so that q* - c is in the range of MA, and let q = MAq be a fixed point

Stable Fitted Reinforcement Learning 1055

of the weighted fitted iteration, then we have

II (I + aMAD(TM - I))q* - (I + aMAD(TM - I))q II

<
II c + MA(I + aD(TM - I)))q* - MA(I + aD(TM - I)))q II
II c II + (1 - b(l - ,))11 q* - q II

II q* - q II < IIcll
b(l -,)

That is, if MA is linear in addition to the conditions for convergence, we can bound
the error for fitted weighted Q-Iearning.

For offline problems, the weighted version of fitted Q-Iearning is not as useful as the
unweighted version: it involves about the same amount of work per iteration, the
contraction factor may not be as good, the error bound may not be as tight, and it
requires M1 = MA in addition to the conditions for convergence of the unweighted
iteration. On the other hand, as we shall see in the next section, the weighted
algorithm can be applied to online problems.

3 ONLINE DISCOUNTED PROBLEMS

Consider the following algorithm, which is a natural generalization of TD(O) (Sut
ton, 1988) to Markov decision problems. (This algorithm has been called
"sarsa" (Singh and Sutton, 1996).) Start with some initial Q function q(O). Re
peat the following steps for i from 0 onwards. Let 1l'(i) be a policy chosen according
to some predetermined tradeoff between exploration and exploitation for the Q
function q(i). Now, put the agent in M's start state and allow it to follow the policy
1l'(i) for a random number of steps L(i) . If at step t of the resulting trajectory the
agent moves from the state Xt under action at with cost Ct to a state Yt for which
the action bt appears optimal, compute the estimated Bellman error

- (+ [(i) 1) [(i) 1 et - Ct , q Ytbt - q Xtat

After observing the entire trajectory, define e(i) to be the vector whose xa-th com
ponent is the sum of et for all t such that Xt = x and at = a. Then compute the
next weight vector according to the TD(O)-like update rule with learning rate a(i)

q(i+l) = q(i) + a (i) MAe(i)

See (Gordon, 1995b) for a comment on the types of mappings MA which are ap
propriate for online algorithms.

We will assume that L(i) has the same distribution for all i and is independent of
all other events related to the i-th and subsequent trajectories, and that E(L(i») is
bounded. Define d~il to be the expected number of times the agent visited state x
and chose action a during the i-th trajectory, given 1l'(i). We will assume that the
policies are such that d~il > € for some positive € and for all i, x, and a. Let D(i)
be the diagonal matrix with elements d~il. With this notation, we can write the
expected update for the sarsa algorithm in matrix form:

E(q(i+l) I q(i») = (I + a(i) MAD(i)(TM - I))q(i)

With the exception of the fact that D(i) changes from iteration to iteration, this
equation looks very similar to the offline weighted fitted Q-Iearning update. How
ever, the sarsa algorithm is not guaranteed to converge even in the benign case

1056 G. J. GORDON

(a) (b)

Figure 1: A counterexample to sarsa. (a) An MDP: from the start state, the agent
may choose the upper or the lower path, but from then on its decisions are forced.
Next to each arc is its expected cost; the actual costs are randomized on each step.
Boxed pairs of arcs are aggregated, so that the agent must learn identical Q values
for arcs in the same box. We used a discount, = .9 and a learning rate a = .1.
To ensure sufficient exploration, the agent chose an apparently suboptimal action
10% of the time. (Any other parameters would have resulted in similar behavior.
In particular, annealing a to zero wouldn't have helped.) (b) The learned Q value
for the right-hand box during the first 2000 steps.

where the Q-function is approximated by state aggregation: when we apply sarsa
to the MDP in figure 1, one of the learned Q values oscillates forever. This problem
happens because the frequency-of-update matrix D(i) can change discontinuously
when the Q function fluctuates slightly: when, by luck, the upper path through the
MDP appears better, the cost-l arc into the goal will be followed more often and
the learned Q value will decrease, while when the lower path appears better the
cost-2 arc will be weighted more heavily and the Q value will increase. Since the
two arcs out of the initial state always have the same expected backed-up Q value
(because the states they lead to are constrained to have the same value), each path
will appear better infinitely often and the oscillation will continue forever.

On the other hand, if we can represent the optimal Q function q*, then no matter
what D(i) is, the expected sarsa update has its fixed point at q*. Since the smallest
diagonal element of D(i) is bounded away from zero and the largest is bounded
above, we can choose an a and a " < 1 so that (I + aMAD(i)(TM - I)) is a
contraction with fixed point q* and factor " for all i. Now if we let the learning
rates satisfy Ei a(i) = 00 and Ei(a(i»)2 < 00, convergencew.p.l to q* is guaranteed
by a theorem of (Jaakkola et al., 1994). (See also the theorem in (Tsitsiklis, 1994).)

More generally, if MA is linear and can represent q* - c for some vector c, we can
bound the error between q* and the fixed point of the expected sarsa update on
iteration i: if we choose an a and a " < 1 as in the previous paragraph,

II E(q(Hl) I q(i») - q* II ~ ,'II q(i) - q* II + 211 ell

for all i. A minor modification of the theorem of (Jaakkola et al., 1994) shows that
the distance from q(i) to the region

{ q III q - q* II ~ 211 c 111 ~ " }

converges w.p.l to zero. That is, while the sequence q(i) may not converge, the
worst it will do is oscillate in a region around q* whose size is determined by how

Stable Fitted Reinforcement Learning 1057

accurately we can represent q* and how frequently we visit the least frequent (state,
action) pair.

Finally, if we follow a fixed exploration policy on every trajectory, the matrix D(i)
will be the same for every i; in this case, because of the contraction property
proved in the previous section, convergence w.p.1 for appropriate learning rates is
guaranteed again by the theorem of (Jaakkola et al., 1994).

4 NONDISCOUNTED PROBLEMS

When M is not discounted, the Q-Iearning backup operator TM is no longer a max
norm contraction. Instead, as long as every policy guarantees absorption w.p.1 into
some set of cost-free terminal states, TM is a contraction in some weighted max
norm. The proofs of the previous sections still go through, if we substitute this
weighted max norm for the unweighted one in every case. In addition, the random
variables L(i) which determine when each trial ends may be set to the first step t
so that Xt is terminal, since this and all subsequent steps will have Bellman errors
of zero. This choice of L(i) is not independent of the i-th trial, but it does have a
finite mean and it does result in a constant D(i).

5 DISCUSSION

We have proven new convergence theorems for two online fitted reinforcement learn
ing algorithms based on Watkins' (1989) Q-Iearning algorithm. These algorithms,
sarsa and sarsa with a fixed exploration policy, allow the use of function approxi
mators whose mappings MA are max norm nonexpansions and satisfy M~ = MA.
The prototypical example of such a function approximator is state aggregation. For
similar results on a larger class of approximators, see (Gordon, 1995b).

Acknowledgements

This material is based on work supported under a National Science Foundation
Graduate Research Fellowship and by ARPA grant number F33615-93-1-1330. Any
opinions, findings, conclusions, or recommendations expressed in this publication
are those of the author and do not necessarily reflect the views of the National
Science Foundation, ARPA, or the United States government.

References

L. Baird. Residual algorithms: Reinforcement learning with function approxima
tion. In Machine Learning (proceedings of the twelfth international conference),
San Francisco, CA, 1995. Morgan Kaufmann.

D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numer
ical Methods. Prentice Hall, 1989.

J. A. Boyan and A. W. Moore. Generalization in reinforcement learning: safely
approximating the value function. In G. Tesauro and D. Touretzky, editors, Ad
vances in Neural Information Processing Systems, volume 7. Morgan Kaufmann,
1995.

S. J. Bradtke. Reinforcement learning applied to linear quadratic regulation. In S. J.
Hanson, J. D. Cowan, and C. L. Giles, editors, Advances in Neural Information
Processing Systems, volume 5. Morgan Kaufmann, 1993.

P. Dayan. The convergence of TD(A) for general lambda. Machine Learning, 8(3-
4):341-362, 1992.

1058 G. J. GOROON

G. J. Gordon. Stable function approximation in dynamic programming. In Machine
Learning (proceedings of the twelfth international conference), San Francisco, CA,
1995. Morgan Kaufmann.

G. J. Gordon. Online fitted reinforcement learning. In J . A. Boyan, A. W. Moore,
and R. S. Sutton, editors, Proceedings of the Workshop on Value Function Ap
proximation, 1995. Proceedings are available as tech report CMU-CS-95-206.

T . Jaakkola, M.I. Jordan, and S. P. Singh. On the convergence of stochastic iterative
dynamic programming algorithms. Neural Computation, 6(6):1185- 1201, 1994.

S. P. Singh, T. Jaakkola, and M. I. Jordan. Reinforcement learning with soft state
aggregation. In G. Tesauro and D. Touretzky, editors, Advances in Neural Infor
mation Processing Systems, volume 7. Morgan Kaufmann, 1995.

S. P. Singh and R. S. Sutton. Reinforcement learning with replacing eligibility
traces. Machine Learning, 1996.

R. S. Sutton. Learning to predict by the methods of temporal differences. Machine
Learning, 3(1):9- 44, 1988.

G. Tesauro. Neurogammon: a neural network backgammon program. In IJCNN
Proceedings III, pages 33-39, 1990.

J. N. Tsitsiklis and B. Van Roy. Feature-based methods for large-scale dynamic
programming. Technical Report P-2277, Laboratory for Information and Decision
Systems, 1994.

J. N. Tsitsiklis. Asynchronous stochastic approximation and Q-Iearning. Machine
Learning, 16(3):185-202, 1994.

C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King's College,
Cambridge, England, 1989.

