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Abstract 

The additive clustering (ADCL US) model (Shepard & Arabie, 1979) 
treats the similarity of two stimuli as a weighted additive measure 
of their common features. Inspired by recent work in unsupervised 
learning with multiple cause models, we propose anew, statistically 
well-motivated algorithm for discovering the structure of natural 
stimulus classes using the ADCLUS model, which promises substan­
tial gains in conceptual simplicity, practical efficiency, and solution 
quality over earlier efforts. We also present preliminary results with 
artificial data and two classic similarity data sets. 

1 INTRODUCTION 

The capacity to judge one stimulus, object, or concept as similado another is thought 
to play a pivotal role in many cognitive processes, including generalization, recog­
nition, categorization, and inference. Consequently, modeling subjective similarity 
judgments in order to discover the underlying structure of stimulus representations 
in the brain/mind holds a central place in contemporary cognitive science. Mathe­
matical models of similarity can be divided roughly into two families: spatial models, 
in which stimuli correspond to points in a metric (typically Euclidean) space and 
similarity is treated as a decreasing function of distance; and set-theoretic models, in 
which stimuli are represented as members of salient subsets (presumably correspond­
ing to natural classes or features in the world) and similarity is treated as a weighted 
sum of common and distinctive subsets. 

Spatial models, fit to similarity judgment data with familiar multidimensional scal­
ing (MDS) techniques, have yielded concise descriptions of homogeneous, perceptual 
domains (e.g. three-dimensional color space), often revealing the salient dimensions 
of stimulus variation (Shepard, 1980). Set-theoretic models are more general , in 
principle able to accomodate discrete conceptual structures typical of higher-level 
cognitive domains, as well as dimensional stimulus structures more common in per-
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ception (Tversky, 1977). In practice, however, the utility of set-theoretic models is 
limited by the hierarchical clustering techniques that underlie conventional methods 
for discovering the discrete features or classes of stimuli. Specifically, hierarchical 
clustering requires that any two classes of stimuli correspond to disjoint or properly 
inclusive subsets, while psychologically natural classes may correspond in general to 
arbitrarily overlapping subsets of stimuli. For example, the subjective similarity of 
two countries results from the interaction of multiple geographic and cultural fac­
tors, and there is no reason a priori to expect the subsets of communist, African, or 
French-speaking nations to be either disjoint or properly inclusive. 

In this paper we consider the additive clustering (ADCL US) model (Shepard & Ara­
bie, 1979), the simplest instantiation of Tversky 's (1977) general contrast model that 
accommodates the arbitrarily overlapping class structures associated with multiple 
causes of similarity. Here, the similarity of two stimuli is modeled as a weighted 
additive measure of their common clusters: 

K 

Sij = I: wkfikfJk + C, (1) 
k=l 

where Sij is the reconstructed similarity of stimuli i and j, the weight Wk captures 
the salience of cluster k, and the binary indicator variable fik equals 1 if stimulus i 
belongs to cluster k and 0 otherwise. The additive constant c is necessary because the 
similarity data are assumed to be on an interval scale. 1 As with conventional clus­
tering models, ADCLUS recovers a system of discrete subsets of stimuli, weighted by 
salience, and the similarity of two stimuli increases with the number (and weight) 
of their common subsets. ADCLUS, however, makes none of the structural assump­
tions (e.g. that any two clusters are disjoint or properly inclusive) which limit the 
applicability of conventional set-theoretic models. Unfortunately this flexibility also 
makes the problem of fitting the ADCL US model to an observed similarity matrix 
exceedingly difficult. 

Previous attempts to fit the model have followed a heuristic strategy to minimize a 
squared-error energy function , 

E = I:(Sij - Sij)2 = I:(Sij - I: wklikfJk)2, (2) 
itj itj k 

by alternately solving for the best cluster configurations fik given the current weights 
Wk and solving for the best weights given the current clusters (Shepard & Arabie, 
1979; Arabie & Carroll, 1980). This strategy is appealing because given the clus­
ter configuration, finding the optimal weights becomes a simple linear least-squares 
problem.2 However, finding good cluster configurations is a difficult problem in com­
binatorial optimization, and this step has always been the weak point in previous 
work . The original ADCLUS (Shepard & Arabie, 1979) and later MAPCLUS (Ara­
bie & Carroll, 1980) algorithms employ ad hoc techniques of combinatorial optimiza­
tion that sometimes yield unexpected or uninterpretable final results. Certainly, no 
rigorous theory exists that would explain why these approaches fail to discover the 
underlying structure of a stimulus set when they do. 

Essentially, the ADCL US model is so challenging to fit because it generates similar­
ities from the interaction of many independent underlying causes . Viewed this way, 
modeling the structure of similarity looks very similar to the multiple-cause learning 

1 In the remainder of this paper, we absorb c into the sum over k, taking the sum over 
k = 0, ... , K , defining Wo == c, and fixing !iO = 1, (Vi) . 

2Strictly speaking, because the weights are typically constrained to be nonnegative, more 
elaborate techniques than standard linear least-squares procedures may be required. 
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problems that are currently a major focus of study in the neural computation litera­
ture (Ghahramani, 1995; Hinton, Dayan, et al., 1995; Saund, 1995; Neal, 1992). Here 
we propose a novel approach to additive clustering, inspired by the progress and 
promise of work on multiple-cause learning within the Expectation-Maximization 
(EM) framework (Ghahramani, 1995; Neal, 1992). Our BM approach still makes 
use of the basic insight behind earlier approaches, that finding {wd given {lid is 
easy, but obtains better performance from treating the unknown cluster memberships 
probabilistically as hidden variables (rather than parameters of the model), and per­
haps more importantly, provides a rigorous and well-understood theory. Indeed, it 
is natural to consider {/ik} as "unobserved" features of the stimuli, complement­
ing the observed data {Sij} in the similarity matrix. Moreover, in some experimental 
paradigms, one or more of these features may be considered observed data, if subjects 
report using (or are requested to use) certain criteria in their similarity judgments. 

2 ALGORITHM 

2.1 Maximum likelihood formulation 

We begin by formulating the additive clustering problem in terms of maximum like­
lihood estimation with unobserved data. Treating the cluster weights w = {Wk} 
as model parameters and the unobserved cluster memberships I = {lik} as hidden 
causes for the observed similarities S = {Sij}, it is natural to consider a hierarchical 
generative model for the "complete data" (including observed and unobserved com­
ponents) of the form p(s, Ilw) = p(sl/, w)p(flw). In the spirit of earlier approaches 
to ADCLUS that seek to minimize a squared-error energy function, we take p(sl/, w) 
to be gaussian with common variance u2 : 

p(sl/, w) ex: exp{ -~ 'L:(Sij - Sij )2} = exp{ -~ 'L:(Sij - 'L: wklik/ik)2}. (3) 
2u itj 2u itj k 

Note that logp(sl/, w) is equivalent to -E/(2u2 ) (ignoring an additive constant), 
where E is the energy defined above. In general, priors p(flw) over the cluster 
configurations may be useful to favor larger or smaller clusters, induce a dependence 
between cluster size and cluster weight, or bias particular kinds of class structures, 
but only uniform priors are considered here. In this case -E /(2u2 ) also gives the 
"complete data" loglikelihood logp(s, Ilw). 

2.2 The EM algorithm for additive clustering 

Given this probabilistic model, we can now appeal to the EM algorithm as the basis 
for a new additive clustering technique. EM calls for iterating the following two­
step procedure, in order to obtain successive estimates of the parameters w that are 
guaranteed never to decrease in likelihood (Dempster et al., 1977). In the E-step, we 
calculate 

Q(wlw(n)) = L,: p(f' Is, wen)) logp(s,f/lw) = 2 \ (-E}3,w(n). (4) 
l' u 

Q(wlw(n) is equivalent to the expected value of E as a function of w, averaged over 
all possible configurations I' of the N K binary cluster memberships, given the ob­
served data s and the current parameter estimates wen). In the M-step, we maximize 
Q(wlw(n) with respect to w to obtain w(n+l). 

Each cluster configuration I' contributes to the mean energy in proportion to its 
probability under the gaussian generative model in (3). Thus the number of configu­
rations making significant contributions depends on the model variance u2 . For large 
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U 2 , the probability is spread over many configurations. In the limiting case u2 ---+ 0, 
only the most likely configuration contributes, making EM effectively equivalent to 
the original approaches presented in Section 1 that use only the single best cluster 
configuration to solve for the best cluster weights at each iteration. 

In line with the basic insight embodied less rigorously in these earlier algorithms, the 
M-step still reduces to a simple (constrained) linear least-squares problem, because 
the mean energy (E} = L:i#j (srj - 2Sij L:k Wk(fik!ik} + L:kl WkWl(fik!jk!il!il}) , 
like the energy E, is quadratic in the weights Wk. The E-step, which amounts to 
computing the expectations mijk = (fik!ik} and mijkl = (fik !ik!il/j I} , is much 
more involved, because the required sums over all possible cluster configurations f' 
are intractable for any realistic case. We approximate these calculations using Gibbs 
sampling, a Monte Carlo method that has been successfully applied to learning similar 
generative models with hidden variables (Ghahramani, 1995; Neal 1992).3 

Finally, the algorithm should produce not only estimates of the cluster weights, but 
also a final cluster configuration that may be interpreted as the psychologically natural 
features or classes of the relevant domain. Consider the expected cluster memberships 
Pik = (fik}$ w(n) , which give the probability that stimulus i belongs to cluster k, given 
the observed similarity matrix and the current estimates of the weights. Only when 
all Pik are close to 0 or 1, i.e. when u2 is small enough that all the probability becomes 
concentrated on the most likely cluster configuration and its neighbors, can we fairly 
assert which stimuli belong to which classes. 

2.3 Simulated annealing 

Two major computational bottlenecks hamper the efficiency of the algorithm as de­
scribed so far. First, Gibbs sampling may take a very long time to converge to the 
equilibrium distribution, particularly when u2 is small relative to the typical energy 
difference between neighboring cluster configurations. Second, the likelihood surfaces 
for realistic data sets are typically riddled with local maxima. We solve both problems 
by annealing on the variance. That is, we run Gibbs sampling using an effective vari­
ance u;" initially much greater than the assumed model variance u2 , and decrease 
u;" towards u 2 according to the following two-level scheme. We anneal within the 
nth iteration of EM to speed the convergence of the Gibbs sampling E-step (Neal, 
1993) , by lowering u;jJ from some high starting value down to a target U~arg(n) for 
the nth EM iteration . We also anneal between iterations of EM to avoid local maxima 
(Ros~ et al., 1990), by intializing U~arg(o) at a high value and taking U~arg(n) ---+ u2 

as n Increases. 

3 RESULTS 

In all of the examples below, one run of the algorithm consisted of 100-200 iterations 
of EM, annealed both within and between iterations. Within each E-step, 10-100 
cycles of Gibbs sampling were carried out at the target temperature UTarg while the 
statistics for mik and mijk were recorded. These recorded cycles were preceeded 
by 20-200 unrecorded cycles, during which the system was annealed from a higher 
temperature (e.g. 8u~arg) down to U~arg, to ensure that statistics were collected as 
close to equilibrium as possible. The precise numbers of recorded and unrecorded 
iterations were chosen as a compromise between the need for longer samples as the 

3We generally also approximate miJkl ~ miJkmi;"l, which usually yields satisfactory re­
sults with much greater efficiency. 
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Table 1: Classes and weights recovered for the integers 0-9. 

Rank Weight Stimuli in class Interpretation 
1 .444 2 4 8 powers of two 
2 .345 012 small numbers 
3 .331 3 6 9 multiples of three 
4 .291 6 789 large numbers 
5 .255 2 345 6 middle numbers 
6 .216 1 3 5 7 9 odd numbers 
7 .214 1 2 3 4 smallish numbers 
8 .172 4 5 6 7 8 largish numbers 

Variance accounted for = 90.9% with 8 clusters (additive constant = .148). 

number of hidden variables is increased and the need to keep computation times 
practical. 

3.1 Artificial data 

We first report results with artificial data, for which the true cluster memberships and 
weights are known, to verify that the algorithm does in fact find the desired structure. 
We generated 10 data sets by randomly assigning each of 12 stimuli independently 
and with probability 1/2 to each of 8 classes, and choosing random weights for the 
classes uniformly from [0.1,0.6]. These numbers are grossly typical of the real data 
sets we examine later in this section. We then calculated the observed similarities 
from (1), added a small amount of random noise (with standard deviation equal to 
5% of the mean noise-free similarity), and symmeterized the similarity matrix. 

The crucial free parameter is K, the assumed number of stimulus classes. When the 
algorithm was configured with the correct number of clusters (K = 8), the original 
classes and weights were recovered during the first run of the algorithm on all 10 data 
sets, after an average of 58 EM iterations (low 30, high 92). When the algorithm 
was configured with K = 7 clusters, one less than the correct number, the seven 
classes with highest weight were recovered on 9/10 first runs. On these runs, the 
recovered weights and true weights had a mean correlation of 0.948 (p < .05 on each 
run). When configured with K = 5, the first run recovered either four of the top 
five classes (6/10 trials) or three of the top five (4/10 trials). When configured with 
too many clusters (K = 12), the algorithm typically recovered only 8 clusters with 
significantly non-zero weights, corresponding to the 8 correct classes. Comparable 
results are not available for ADCLUS or MAPCLUS, but at least we can be satisfied 
that our algorithm achieves a basic level of competence and robustness. 

3.2 Judged similarities of the integers 0-9 

Shepard et al. (1975) had subjects judge the similarities of the integers 0 through 
9, in terms of the "abstract concepts" of the numbers. We analyzed the similarity 
matrix (Shepard, personal communication) obtained by pooling data across subjects 
and across three conditions of stimulus presentation (verbal, written-numeral, and 
written-dots). We chose this data set because it illustrates the power of additive 
clustering to capture a complex, overlapping system of classes, and also because 
it serves to compare the performance of our algorithm with the original ADCL US 
algorithm. Observe first that two kinds of classes emerge in the solution. Classes 
1, 3, and 6 represent familiar arithmetic concepts (e.g. "multiples of three", "odd 
numbers"), while the remaining classes correspond to subsets of consecutive integers 
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Table 2: Classes and weights recovered for the 16 consonant phonemes. 

Rank Weight Stimuli in class Interpretation 
1 .800 f 0 front unvoiced fricatives 
2 .572 dg back voiced stops 
3 .463 p k unvoiced stops (omitting t) 
4 .424 b v {t front voiced 
5 .357 p t k unvoiced stops 
6 .292 mn nasals 
7 .169 dgvCTz2 voiced (omitting b) 
8 .132 ptkfOs unvoiced (omittings) 

Variance accounted for = 90.2% with 8 clusters (additive constant = .047). 

and thus together represent the dimension of numerical magnitude. In general, both 
arithmetic properties and numerical magnitude contribute to judged similarity, as 
every number has features of both types (e.g. 9 is a "large" "odd" "multiple of three"), 
except for 0, whose only property is "small." Clearly an overlapping clustering model 
is necessary here to accomodate the multiple causes of similarity. 

The best solution reported for these data using the original ADCLUS algorithm 
consisted of 10 classes, accounting for 83.1% of the variance of the data (Shepard & 
Arabie, 1979).4 Several of the clusters in this solution differed by only one or two 
members (e.g. three of the clusters were {0,1}, {0,1,2}, and {0,1,2,3,4}), which led 
us to suspect that a better fit might be obtained with fewer than 10 classes. Table 2 
shows the best solution found in five runs of our algorithm, accounting for 90.9% of 
the variance with eight classes. Compared with our solution, the original ADCLUS 
solution leaves almost twice as much residual variance unaccounted for, and with 10 
classes, is also less parsimonious. 

3.3 Confusions between 16 consonant phonemes 

Finally, we examine Miller & Nicely's (1955) classic data on the confusability of 16 
consonant phonemes, collected under varying signal/noise conditions with the orig­
inal intent of identifying the features of English phonology (compiled and reprinted 
in Carroll & Wish, 1974). Note that the recovered classes have reasonably natural 
interpretations in terms of the basic features of phonological theory, and a very dif­
ferent overall structure from the classes recovered in the previous example. Quite 
significantly, the classes respect a hierarchical structure almost perfectly, with class 
3 included in class 5, classes 1 and 5 included in class 8, and so on. Only the absence 
of /b / in class 7 violates the strict hierarchy. 

These data also provide the only convenient oppportunity to compare our algorithm 
with the MAPCLUS approach to additive clustering (Arabie & Carroll, 1980). The 
published MAPCLUS solution accounts for 88.3% of the variance in this data, using 
eight clusters. Arabie & Carroll (1980) report being "substantively pe ... turbed" (p. 
232) that their algorithm does not recover a distinct cluster for the nasals /m n/, 
which have been considered a very salient subset in both traditional phonology (Miller 
& Nicely, 1955) and other clustering models (Shepard, 1980). Table 3 presents our 
eight-cluster solution, accounting for 90.2% of the variance. While this represents 
only a marginal improvement, our solution does contain a cluster for the nasals, as 
expected on theoretical grounds. 

4Variance accounted for = 1- Ej Ei#j(SiJ - 8)2, where s is the mea.n of the set {Sij}. 
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3.4 Conclusion 

These examples show that ADCLUS can discover meaningful representations of stim­
uli with arbitrarily overlapping class structures (arithmetic properties), as well as di­
mensional structure (numerical magnitude) or hierarchical structure (phoneme fami­
lies) when appropriate. We have argued that modeling similarity should be a natural 
application of learning generative models with multiple hidden causes, and in that 
spirit, presented a new probabilistic formulation of the ADCLUS model and an al­
gorithm based on EM that promises better results than previous approaches. We 
are currently pursuing several extensions: enriching the generative model, e.g. by 
incorporating significant prior structure, and improving the fitting process, e.g. by 
developing efficient and accurate mean field approximations . More generally, we hope 
this work illustrates how sophisticated techniques of computational learning can be 
brought to bear on foundational problems of structure discovery in cognitive science. 
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