
Worst-case Loss Bounds
for Single Neurons

David P. Helmbold
Department of Computer Science

University of California, Santa Cruz
Santa Cruz, CA 95064

USA

Jyrki Kivinen
Department of Computer Science
P.O. Box 26 (Teollisuuskatu 23)
FIN-00014 University of Helsinki

Finland

Manfred K. Warmuth
Department of Computer Science

University of California, Santa Cruz
Santa Cruz, CA 95064

USA

Abstract

We analyze and compare the well-known Gradient Descent algo­
rithm and a new algorithm, called the Exponentiated Gradient
algorithm, for training a single neuron with an arbitrary transfer
function . Both algorithms are easily generalized to larger neural
networks, and the generalization of Gradient Descent is the stan­
dard back-propagation algorithm. In this paper we prove worst­
case loss bounds for both algorithms in the single neuron case.
Since local minima make it difficult to prove worst-case bounds
for gradient-based algorithms, we must use a loss function that
prevents the formation of spurious local minima. We define such
a matching loss function for any strictly increasing differentiable
transfer function and prove worst-case loss bound for any such
transfer function and its corresponding matching loss. For exam­
ple, the matching loss for the identity function is the square loss
and the matching loss for the logistic sigmoid is the entropic loss.
The different structure of the bounds for the two algorithms indi­
cates that the new algorithm out-performs Gradient Descent when
the inputs contain a large number of irrelevant components.

310 D. P. HELMBOLD, J. KIVINEN, M. K. WARMUTH

1 INTRODUCTION

The basic element of a neural network, a neuron, takes in a number of real-valued
input variables and produces a real-valued output. The input-output mapping of
a neuron is defined by a weight vector W E RN, where N is the number of input
variables, and a transfer function ¢. When presented with input given by a vector
x E RN, the neuron produces the output y = ¢(w . x). Thus, the weight vector
regulates the influence of each input variable on the output, and the transfer function
can produce nonlinearities into the input-output mapping. In particular, when the
transfer function is the commonly used logistic function, ¢(p) = 1/(1 + e-P), the
outputs are bounded between 0 and 1. On the other hand, if the outputs should
be unbounded, it is often convenient to use the identity function as the transfer
function, in which case the neuron simply computes a linear mapping. In this
paper we consider a large class of transfer functions that includes both the logistic
function and the identity function, but not discontinuous (e.g. step) functions.

The goal of learning is to come up with a weight vector w that produces a
desirable input-output mapping. This is achieved by considering a sequence
S = ((X1,yt}, ... ,(Xl,Yl» of examples, where for t = 1, ... ,i the value Yt E R
is the desired output for the input vector Xt, possibly distorted by noise or other
errors. We call Xt the tth instance and Yt the tth outcome. In what is often called
batch learning, alli examples are given at once and are available during the whole
training session. As noise and other problems often make it impossible to find a
weight vector w that would satisfy ¢(w· Xt) = Yt for all t, one instead introduces a
loss function L, such as the square loss given by L(y, y) = (y - y)2/2, and finds a
weight vector w that minimizes the empirical loss (or training error)

l

Loss(w,S) = LL(Yt,¢(w . xt}) . (1)
t=l

With the square loss and identity transfer function ¢(p) = p, this is the well-known
linear regression problem. When ¢ is the logistic function and L is the entropic loss
given by L(y, y) = Y In(yJY) + (1 - y) In((l - y)/(l - y)), this can be seen as a
special case oflogistic regression. (With the entropic loss, we assume 0 ~ Yt, Yt ~ 1
for all t, and use the convention OlnO = Oln(O/O) = 0.)

In this paper we use an on-line prediction (or life-long learning) approach to the
learning problem. It is well known that on-line performance is closely related to
batch learning performance (Littlestone, 1989; Kivinen and Warmuth, 1994).
Instead of receiving all the examples at once, the training algorithm begins with
some fixed start vector W1, and produces a sequence W1, ... , w l+1 of weight vectors.
The new weight vector Wt+1 is obtained by applying a simple update rule to the
previous weight vector Wt and the single example (Xt, Yt). In the on-line prediction
model, the algorithm uses its tth weight vector, or hypothesis, to make the prediction
Yt = ¢(Wt . xt). The training algorithm is then charged a loss L(Yt, Yt) for this tth
trial. The performance of a training algorithm A that produces the weight vectors
Wt on an example sequence S is measured by its total (cumulative) loss

l

Loss(A, S) = L L(Yt, ¢(Wt . Xt» . (2)
t=l

Our main results are bounds on the cumulative losses for two on-line prediction
algorithms. One of these is the standard Gradient Descent (GO) algorithm. The
other one, which we call EG±, is also based on the gradient but uses it in a different

Worst-case Loss Bounds for Single Neurons 311

manner than GD. The bounds are derived in a worst-case setting: we make no as­
sumptions about how the instances are distributed or the relationship between each
instance Xt and its corresponding outcome Yt. Obviously, some assumptions are
needed in order to obtain meaningful bounds. The approach we take is to compare
the total losses, Loss(GD,5) and Loss(EG±, 5), to the least achievable empirical
loss, infw Loss(w, 5). If the least achievable empirical loss is high, the dependence
between the instances and outcomes in 5 cannot be tracked by any neuron using
the transfer function, so it is reasonable that the losses of the algorithms are also
high. More interestingly, if some weight vector achieves a low empirical loss, we
also require that the losses of the algorithms are low. Hence, although the algo­
rithms always predict based on an initial segment of the example sequence, they
must perform almost as well as the best fixed weight vector for the whole sequence.

The choice of loss function is crucial for the results that we prove. In particular,
since we are using gradient-based algorithms, the empirical loss should not have spu­
rious local minima. This can be achieved for any differentiable increasing transfer
function ¢ by using the loss function L¢ defined by

r1(y)
L¢(y, fj) = f (¢(z) - y) dz . J ¢-l(y)

(3)

For y < fj the value L¢(y, fj) is the area in the z X ¢(z) plane below the function
¢(z), above the line ¢(z) = y, and to the left of the line z = ¢-l(fj). We call L¢ the
matching loss function for transfer function ¢, and will show that for any example
sequence 5, if L = L¢ then the mapping from w to Loss(w , 5) is conveX. For
example, if the transfer function is the logistic function, the matching loss function
is the entropic loss, and ifthe transfer function is the identity function, the matching
loss function is the square loss. Note that using the logistic activation function with
the square loss can lead to a very large number of local minima (Auer et al., 1996).
Even in the batch setting there are reasons to use the entropic loss with the logistic
transfer function (see, for example, Solla et al. , 1988).

How much our bounds on the losses of the two algorithms exceed the least empirical
loss depends on the maximum slope of the transfer function we use. More impor­
tantly, they depend on various norms of the instances and the vector w for which
the least empirical loss is achieved. As one might expect, neither of the algorithms
is uniformly better than the other. Interestingly, the new EG± algorithm is better
when most of the input variables are irrelevant, i.e., when some weight vector w
with Wi = 0 for most indices i has a low empirical loss. On the other hand, the
GD algorithm is better when the weight vectors with low empirical loss have many
nonzero components, but the instances contain many zero components.

The bounds we derive concern only single neurons, and one often combines a number
of neurons into a multilayer feedforward neural network. In particular, applying
the Gradient Descent algorithm in the multilayer setting gives the famous back
propagation algorithm. Also the EG± algorithm, being gradient-based, can easily
be generalized for multilayer feedforward networks. Although it seems unlikely
that our loss bounds will generalize to multilayer networks, we believe that the
intuition gained from the single neuron case will provide useful insight into the
relative performance of the two algorithms in the multilayer case. Furthermore, the
EG± algorithm is less sensitive to large numbers of irrelevant attributes. Thus it
might be possible to avoid multilayer networks by introducing many new inputs,
each of which is a non-linear function of the original inputs. Multilayer networks
remain an interesting area for future study.

Our work follows the path opened by Littlestone (1988) with his work on learning

312 D. P. HELMBOLD, J. KIVINEN, M. K. WARMUTH

thresholded neurons with sparse weight vectors. More immediately, this paper is
preceded by results on linear neurons using the identity transfer function (Cesa­
Bianchi et aI., 1996; Kivinen and Warmuth, 1994).

2 THE ALGORITHMS

This section describes how the Gradient Descent training algorithm and the new
Exponentiated Gradient training algorithm update the neuron's weight vector.

For the remainder of this paper, we assume that the transfer function </J is increasing
and differentiable, and Z is a constant such that </J'(p) ~ Z holds for all pER. For
the loss function LcjJ defined by (3) we have

aLcjJ(Y, </J(w . x» = (</J(w . x) - Y)Xi .
aWi

(4)

Treating LcjJ(Y, </J(w·x» for fixed x and Y as a function ofw, we see that the Hessian
H of the function is given by Hij = </J'(W·X)XiXj. Then v T Hv = </J'(w·x)(v.x)2, so
H is positive definite. Hence, for an arbitrary fixed 5, the empirical loss Loss(w, 5)
defined in (1) as a function of W is convex and thus has no spurious local minima.

We first describe the Gradient Descent (GO) algorithm, which for multilayer net­
works leads to the back-propagation algorithm. Recall that the algorithm's predic­
tion at trial t is Yt = </J(Wt . Xt), where Wt is the current weight vector and Xt is
the input vector. By (4), performing gradient descent in weight space on the loss
incurred in a single trial leads to the update rule

Wt+l = Wt - TJ(Yt - Yt)Xt .

The parameter TJ is a positive learning rate that multiplies the gradient of the loss
function with respect to the weight vector Wt. In order to obtain worst-case loss
bounds, we must carefully choose the learning rate TJ. Note that the weight vector
Wt of GO always satisfies Wt = Wi + E!:; aixi for some scalar coefficients ai.
Typically, one uses the zero initial vector Wi = O.

A more recent training algorithm, called the Exponentiated Gradient (EG) algo­
rithm (Kivinen and Warmuth, 1994), uses the same gradient in a different way. This
algorithm makes multiplicative (rather than additive) changes to the weight vector,
and the gradient appears in the exponent. The basic version of the EG algorithm
also normalizes the weight vector, so the update is given by

N

Wt+i,i = Wt,ie-IJ(Yt-Yt)Xt" / L Wt,je-IJ(Yt-Y,)Xt,i

j=i

The start vector is usually chosen to be uniform, Wi = (1/ N, ... ,1/ N). Notice that
it is the logarithms of the weights produced by the EG training algorithm (rather
than the weights themselves) that are essentially linear combinations of the past
examples. As can be seen from the update, the EG algorithm maintains the con­
straints Wt,i > 0 and Ei Wt,i = 1. In general, of course, we do not expect that such
constraints are useful. Hence, we introduce a modified algorithm EG± by employinj
a linear transformation of the inputs. In addition to the learning rate TJ, the EG
algorithm has a scaling factor U > 0 as a parameter. We define the behavior of
EG± on a sequence of examples 5 = ((Xi,Yi), .. . ,(Xl,Yl» in terms of the EG al­
gorithm's behavior on a transformed example sequence 5' = ((xi, yd, .. . , (x~, Yl»

Worst-case Loss Bounds for Single Neurons 313

where x' = (U Xl , ... , U XN , -U Xl, ... , -U XN) ' The EG algorithm uses the uniform
start vector (1/(2N), . .. , 1/(2N» and learning rate supplied by the EG± algorithm.
At each time time t the N-dimensional weight vector w of EG± is defined in terms
of the 2N -dimensional weight vector Wi of EG as

Wt,i = U(W~ , i - W~ ,N+i) '

Thus EG± with scaling factor U can learn any weight vector w E RN with Ilwlll <
U by having the embedded EG algorithm learn the appropriate 2N-dimensional
(nonnegative and normalized) weight vector Wi.

3 MAIN RESULTS

The loss bounds for the GO and EG± algorithms can be written in similar forms
that emphasize how different algorithms work well for different problems. When
L = L¢n we write Loss¢(w, S) and Loss¢(A , S) for the empirical loss of a weight
vector wand the total loss of an algorithm A, as defined in (1) and (2). We give
the upper bounds in terms of various norms. For x E RN, the 2-norm Ilxl b is the
Euclidean length of the vector x, the I-norm Ilxlll the sum of the absolute values
of the components of x , and the (X)-norm Ilxll oo the maximum absolute value of
any component of x . For the purposes of setting the learning rates, we assume
that before training begins the algorithm gets an upper bound for the norms of
instances. The GO algorithm gets a parameter X 2 and EG a parameter Xoo such
that IIxtl12 ~ X 2 and Ilxtl loo ~ X oo hold for all t. Finally, recall that Z is an upper
bound on ¢/(p) . We can take Z = 1 when ¢ is the identity function and Z = 1/4
when ¢ is the logistic function .

Our first upper bound is for GO . For any sequence of examples S and any weight
vector u ERN, when the learning rate is TJ = 1/(2X?Z) we have

Loss¢(GO,S) ~ 2Loss¢(u,S) + 2(llulbX2)2Z .

Our upper bounds on the EG± algorithm require that we restrict the one-norm of
the comparison class: the set of weight vectors competed against . The comparison
class contains all weight vectors u such that Ilulh is at most the scaling factor ,
U. For any scaling factor U , any sequence of examples S, and any weight vector
u ERN with Ilulll ~ U, we have

4 16
Loss¢(EG± , S) ~ 3Loss¢(u, S)+ 3(UXoo)2Z1n(2N)

when the learning rate is TJ = 1/(4(UXoo)2Z).

Note that these bounds depend on both the unknown weight vector u and some
norms of the input vectors. If the algorithms have some further prior information
on the sequence S they can make a more informed choice of TJ . This leads to bounds
with a constant of 1 before the the Loss¢(u, S) term at the cost of an additional
square-root term (for details see the full paper , Helmbold et al. , 1996) .

It is important to realize that we bound the total loss of the algorithms over any
adversarially chosen sequence of examples where the input vectors satisfy the norm
bound. Although we state the bounds in terms of loss on the data, they imply that
the algorithms must also perform well on new unseen examples, since the bounds
still hold when an adversary adds these additional examples to the end of the
sequence. A formal treatment of this appears in several places (Littlestone, 1989;

314 D. P. HELMBOLD, J. KIVINEN, M. K. WARMUTH

Kivinen and Warmuth, 1994). Furthermore, in contrast to standard convergence
proofs (e.g. Luenberger, 1984), we bound the loss on the entire sequence of examples
instead of studying the convergence behavior of the algorithm when it is arbitrarily
close to the best weight vector.

Comparing these loss bounds we see that the bound for the EG± algorithm grows
with the maximum component of the input vectors and the one-norm of the best
weight vector from the comparison class. On the other hand, the loss bound for the
GD algorithm grows with the tWo-norm (Euclidean length) of both vectors. Thus
when the best weight vector is sparse, having few significant components, and the
input vectors are dense, with several similarly-sized components, the bound for the
EG± algorithm is better than the bound for the GD algorithm. More formally,
consider the noise-free situation where Lossr/>(u, S) = 0 for some u. Assume Xt E
{ -1, I}N and U E {-I, 0, I}N with only k nonzero components in u. We can
then take X 2 = ..,(N, Xoo = 1, IIuI12 = Vk, and U = k. The loss bounds
become (16/3)k 2Z1n(2N) for EG± and 2kZN for GD, so for N ~ k the EG±
algorithm clearly wins this comparison. On the other hand, the GD algorithm has
the advantage over the EG algorithm when each input vector is sparse and the best
weight vector is dense, having its weight distributed evenly over its components. For
example, if the inputs Xt are the rows of an N x N unit matrix and U E { -1, 1 } N ,

then X2 = Xoo = 1, IIuI12 = ..,(N, and U = N. Thus the upper bounds become
(16/3)N 2Z1n(2N) for EG± and 2NZ for GD, so here GD wins the comparison.

Of course, a comparison of the upper bounds is meaningless unless the bounds are
known to be reasonably tight. Our experiments with artificial random data suggest
that the upper bounds are not tight. However, the experimental evidence also
indicates that EG± is much better than G D when the best weight vector is sparse.
Thus the upper bounds do predict the relative behaviors of the algorithms.

The bounds we give in this paper are very similar to the bounds Kivinen and
Warmuth (1994) obtained for the comparison class of linear functions and the square
loss. They observed how the relative performances of the GD and EG± algorithms
relate to the norms of the input vectors and the best weight vector in the linear
case.

Our methods are direct generalizations of those applied for the linear case (Kivinen
and Warmuth, 1994). The key notion here is a distance function d for measuring
the distance d(u, w) between two weight vectors U and w. Our main distance
measures are the Squared Euclidean distance ~ II u - w II ~ and the Relative Entropy
distance (or Kullback-Leibler divergence) L~l Ui In(ui/wi). The analysis exploits
an invariant over t and u of the form

aLr/>(Yt, Wt . Xt) - bLr/>(Yt, U· Xt) ~ d(u, Wt) - d(u, Wt+l) ,

where a and b are suitably chosen constants. This invariant implies that at each
trial, if the loss of the algorithm is much larger than that of an arbitrary vector
u, then the algorithm updates its weight vector so that it gets closer to u. By
summing the invariant over all trials we can bound the total loss of the algorithms
in terms of Lossr/>(u, S) and d(u, wI). Full details will be contained in a technical
report (Helmbold et al., 1996).

4 OPEN PROBLEMS

Although the presence of local minima in multilayer networks makes it difficult
to obtain worst case bounds for gradient-based algorithms, it may be possible to

Worst-case Loss Bounds for Single Neurons 315

analyze slightly more complicated settings than just a single neuron. One likely
candidate is to generalize the analysis to logistic regression with more than two
classes. In this case each class would be represented by one neuron.

As noted above, the matching loss for the logistic transfer function is the entropic
loss, so this pair does not create local minima. No bounded transfer function
matches the square loss in this sense (Auer et aI., 1996), and thus it seems im­
possible to get the same kind of strong loss bounds for a bounded transfer function
and the square loss as we have for any (increasing and differentiable) transfer func­
tion and its matching loss function .

As the bounds for EG± depend only logarithmically on the input dimension, the
following approach may be feasible. Instead of using a multilayer net , use a single
(linear or sigmoided) neuron on top of a large set of basis functions. The logarithmic
growth of the loss bounds in the number of such basis functions mean that large
numbers of basis functions can be tried.

Note that the bounds of this paper are only worst-case bounds and our experiments
on artificial data indicate that the bounds may not be tight when the input values
and best weights are large. However, we feel that the bounds do indicate the relative
merits of the algorithms in different situations. Further research needs to be done
to tighten the bounds. Nevertheless, this paper gives the first worst-case upper
bounds for neurons with nonlinear transfer functions.

References

P. Auer , M. Herbster, and M. K. Warmuth (1996). Exponentially many local min­
ima for single neurons. In Advances in Neural Information Processing Systems 8.

N. Cesa-Bianchi , P. Long, and M. K. Warmuth (1996). Worst-case quadratic loss
bounds for on-line prediction of linear functions by gradient descent. IEEE Trans­
actions on Neural Networks. To appear. An extended abstract appeared in COLT
'93, pp. 429-438.

D. P. Helmbold, J . Kivinen , and M. K. Warmuth (1996). Worst-case loss bounds
for single neurons. Technical Report UCSC-CRL-96-2 , Univ. of Calif. Computer
Research Lab, Santa Cruz, CA, 1996. In preparation.

J . Kivinen and M. K. Warmuth (1994). Exponentiated gradient versus gradient
descent for linear predictors. Technical Report UCSC-CRL-94-16, Univ. of Calif.
Computer Research Lab, Santa Cruz , CA, 1994. An extended abstract appeared in
STOC '95, pp. 209-218.

N. Littlestone (1988) . Learning when irrelevant attributes abound: A new linear­
threshold algorithm. Machine Learning, 2:285-318.

N. Littlestone (1989) . From on-line to batch learning. In Proc. 2nd Annual Work­
shop on Computational Learning Theory, pages 269-284. Morgan Kaufmann, San
Mateo, CA.

D. G. Luenberger (1984). Linear and Nonlinear Programming. Addison-Wesley,
Reading, MA.

S. A. Solla, E. Levin, and M. Fleisher (1988) . Accelerated learning in layered neural
networks. Complex Systems, 2:625- 639 .

