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Abstract 

In consideration of attention as a means for goal-directed behav­
ior in non-stationary environments, we argue that the dynamics of 
attention should satisfy two opposing demands: long-term main­
tenance and quick transition. These two characteristics are con­
tradictory within the linear domain. We propose the near saddle­
node bifurcation behavior of a sigmoidal unit with self-connection 
as a candidate of dynamical mechanism that satisfies both of these 
demands. We further show in simulations of the 'bug-eat-food' 
tasks that the near saddle-node bifurcation behavior of recurrent 
networks can emerge as a functional property for survival in non­
stationary environments. 

1 INTRODUCTION 

Most studies of attention have focused on the selection process of incoming sensory 
cues (Posner et al., 1980; Koch et al., 1985; Desimone et al., 1995). Emphasis was 
placed on the phenomena of causing different percepts for the same sensory stimuli. 
However, the selection of sensory input itself is not the final goal of attention. We 
consider attention as a means for goal-directed behavior and survival of the animal. 
In this view, dynamical properties of attention are crucial. While attention has 
to be maintained long enough to enable robust response to sensory input, it also 
has to be shifted quickly to a novel cue that is potentially important. Long-term 
maintenance and quick transition are critical requirements for attention dynamics. 
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We investigate a possible neural mechanism that enables those dynamical charac­
teristics of attention. 

First, we analyze the dynamics of a network of sigmoidal units with self-connections. 
We show that both long-term maintenance and quick transition can be achieved 
when the system parameters are near a "saddle-node bifurcation" point . Then, we 
test if such a dynamical mechanism can actually be helpful for an autonomously 
behaving agent in simulations of a 'bug-eat-food' task. The result indicates that 
near saddle-node bifurcation behavior can emerge in the course of evolution for 
survival in non-stationary environments. 

2 NEAR SADDLE-NODE BIFURCATION BEHAVIOR 

When a pulse-like input is given to a linear system, the rising and falling phases 
of the response have the same time constants. This means that long-term mainte­
nance and quick transition cannot be simultaneously achieved by linear dynamics. 
Therefore, it is essential to consider a nonlinear dynamical mechanism to achieve 
these two demands. 

2.1 DYNAMICS OF A SELF-RECURRENT UNIT 

First, we consider the dynamics of a single sigmoidal unit with the self-connection 
weight a and the bias b. 

y(t + 1) 

F(x) 

F(ay(t) + b) , 
1 

1 + exp( -x)' 

(1) 

(2) 

The parameters (a, b) determine the qualitative behavior of the system such as the 
number of fixed points and their stabilities. As we change the parameters , the 
qualitative behavior of the system may suddenly change. This is referred to as 
"bifurcation" (Guckenheimer, et al., 1983). A typical example is a "saddle-node 
bifurcation" in which a pair of fixed points, one stable and one unstable, emerges. 
In our system, this occurs when the state transition curve y(t + 1) = F(ay(t) + b) is 
tangent to y(t + 1) = y(t). Let y* be this point of tangency. We have the following 
condi tion for saddle-node bifurcation. 

F(ay* + b) 

dF(ay + b) I 
dy y=y. 

y* 

1 

These equations can be solved, by noting F'(x) = F(x)(l- F(x)), as 

a 

b = 

1 
y* (1 - y*) 

1 
F-1(y*) - ay* = F-l(y*) - --

I- y* 

(3) 

( 4) 

(5) 

(6) 

By changing the fixed point value y* between a and 1, we can plot a curve in the 
parameter space (a, b) on which saddle-node bifurcation occurs, as shown in Figure 
1 (left). A pair of a saddle point and a stable fixed point emerges or disappears 
when the parameters pass across the cusp like curve (cases 2 and 4) . The system 
has only one stable fixed point when the parameters are outside the cusp (case 1) 
and three fixed points inside the cusp (case 3). 
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Figure 1: Bifurcation Diagram of a Self-Recurrent Unit . Left : the curve in the 
parameter space (a , b) on which saddle-node bifurcation is seen. Right : state tran­
sition diagrams for four different cases. 
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Figure 2: Temporal Responses of Self-Recurrent Units. Left : near saddle-node 
bifurcation. Right : far from bifurcation. 

An interesting behavior can be seen when the parameters are just outside the cusp, 
as shown in Figure 2 (left) . The system has only one fixed point near Y = 0, but 
once the unit is activated (y ~ 1) , it stays "on" for many time steps and then goes 
back to the fixed point quickly. Such a mechanism may be useful in satisfying the 
requirements of attention dynamics: long-term maintenance and quick transition. 

2.2 NETWORK OF SELF-RECURRENT UNITS 

Next, we consider the dynamics of a network of the above self-recurrent units. 

Yi(t + 1) = F[aYi(t) + b + L CijYj(t) + diUi(t)], (7) 
j,jti 

where a is the self connection weight , b is the bias, Cij is the cross connection weight, 
and di is the input connection weight , and Ui(t) is the external input. The effect of 
lateral and external inputs is equivalent to the change in the bias, which slides the 
sigmoid curve horizontally without changing the slope. 

For example, one parameter set of the bifurcation at y* = 0.9 is a = 11.11 and 
b ~ -7.80. Let b = -7.90 so that the unit has a near saddle-node bifurcation 
behavior when there is no lateral or external inputs. For a fixed a = 11.11, as we 
increase b, the qualitative behavior of the system appears as case 3 in Figure 1, and 
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Figure 3: A Creature's Sensory Inputs(Left), Motor System(Center) and Network 
Architecture(Right) 

then, it changes again at b:::::: -3.31, where the fixed point at Y = 0.1, or another 
bifurcation point , appears as case 4 in Figure L Therefore , ifthe input sum is large 
enough, i.e . Lj ,j;Ci CijYj + diuj > -3.31- (-7.90) :::::: 4.59, the lower fixed point 
at Y = 0.1 disappears and the state jumps up to the upper fixed point near Y = 1, 
quickly turning the unit "on". If the lateral connections are set properly, this can 
in turn suppress the activation of other units. Once the external input goes away, 
as we see in Figure 2 (left), the state stays "on" for a long time until it returns to 
the fixed point near Y = O. 

3 EVOLUTION OF NEAR BIFURCATION DYNAMICS 

In the above section, we have theoretically shown the potential usefulness of near 
saddle-node bifurcation behavior for satisfying demands for attention dynamics. We 
further hypothesize that such behavior is indeed useful in animal behaviors and can 
be found in the course of learning and evolution of the neural system. 

To test our hypothesis, we simulated a 'bug-eat-food ' task . Our purpose in t.his 
simulation was to see whether the attention dynamics discussed in the previous 
section would help obtain better performance in a non-stationary environment. Vve 
used evolutionary programming (Fogel et aI, 1990) to optimize the performance of 
recurrent networks and feedforward networks. 

3.1 THE BUG AND THE WORLD 

In our simulation, a simple creature traveled around a non-stationary environment. 
In the world, there were a certain number of food items. Each item was fixed at a 
certain place in the world but appeared or disappeared in a stochastic fashion, as 
determined by a two-state Markov system. In order to survive, A creature looked 
for food by traveling the world . The amount of food a creature found in a certain 
time period was the measure of its performance. 

A creature had five sensory inputs, each of which detected food in the sector of 45 
degrees (Figure 3, right). Its output level was given by L J' .l.., where Tj ,"vas the 

r J 

distance to the j-th food item within the sector. Note that the format of the input 
contained information about distance and also that the creature could only receive 
the amount of the input but could not distinguish each food from others. 

For the sake of simplicity, we assumed that the creature lived in a grid-like world . 
On each time step, it took one of three motor commands: L: turn left (45 degrees), 
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Density of Food 0.05 0.10 
Markov Transition Matrix .5 .5 .8 .8 .5 .5 .8 .8 
of each food .5 .5 .2 .2 .5 .5 .2 .2 

Random Walk 7.0 6.9 13.8 13.9 
Nearest Visible 42.7 18.6 65.3 32.4 
FeedForward 58.6 37.3 84.8 60.0 
Recurrent 65.7 43.6 94.0 66.1 
Nearest Visible/Invisible 97.7 97.1 129.1 128.8 

Table 1: Performances of the Recurrent Network and Other Strategies. 

C: step forward, and R: turn right (Figure 3, center). Simulations were run with 
different Markov transition matrices of food appearance and with different food 
densities. A creature got the food when it reached the food, whether it was visible 
or invisible. When a creature ate a food item, a new food item was placed randomly. 
The size of the world was 10x10 and both ends were connected as a torus. 

A creature was composed of two layers: visual layer and motor layer (Figure 3, 
left). There were five units1 in visual layer, one for each sensory input, and their 
dynamics were given by Equation (7). The self-connection a, the bias b and the 
input weight di were the same for all units. There were three units in motor layer , 
each coding one of three motor commands, and their state was given by 

ek + L: fkiYi(t), 

exp(xk(t)) 

L:/ exp(x/(t)) ' 

(8) 

(9) 

where ek was the bias and fki was the feedforward connection weight. 2 One of the 
three motor commands (L,C,R) was chosen stochastically with the probability Pk 
(k=L,C,R). The activation pattern in visual layer was shifted when the creature 
made a turn, which should give proper mapping between the sensory input and the 
working memory. 

3.2 EVOLUTIONARY PROGRAMMING 

Each recurrent network was characterized by the parameters (a,b,Cij,di,ek,lkd, 
some of which were symmetrically shared, e.g. C12 = C21. For comparison, we 
also tested feedforward networks where recurrent connections were removed, i.e. 
a = Cij = O. 

A population of 60 creatures was tested on each generation. The initial population 
was generated with random parameters. Each of the top twenty scoring creatures 
produced three offspring; one identical copy of the parameters of the parent's and 
two copies of these parameters with a Gaussian fluctuation. In this paper, we report 
the result after 60 generations. 

3.3 PERFORMANCE 

1 We denote each unit in visual layer by Ul, U2, U3, U4, Us from the left to the right for 
the later convenience 

2In this simulation reported here, we set ek = O. 
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Figure 4: The Convergence of the Parameter of (a , b) by Evolutionary Programming 
Plotted in the Bifurcation Diagram. The food density is 0.10 in both examples 
above . 

Table 1 shows the average of food found after 60 generations. As a reference of 
performance level, we also measured the performances of three other simple algo­
rithms: 1) random walk : one of the three motor commands is taken randomly with 
equal probability. 2) nearest visible: move toward the nearest food visible at the 
time within the creature's field of view of (U2, U3, U4). 3) nearest visible/invisible: 
move toward the nearest food within the view of (U2, U3, U4) no matter if it is visible 
or not, which gives an upper bound of performance. 

The performance of recurrent network is better than that of feedforward network 
and 'nearest visible'. This suggests that the ability of recurrent network to remem­
ber the past is advantageous. 

The performance of feedforward network is better than that of 'nearest visible '. 
One reason is that feedforward network could cover a broader area to receive inputs 
than 'nearest visible' . In addition, two factors, the average time in which a creature 
reaches the food and the average time in which the food disappears, may influence 
the performance of feedforward network and 'nearest visible'. Feedforward network 
could optimize its output to adapt two factors with its broader view in evolution 
while 'nearest visible' did not have such adaptability. 

It should be noted that both of 'nearest visible/invisible ' and 'nearest visible' explic­
itly assumed the higher-order sensory processing: distinguishing each food item from 
the others and measuring the distance between each food and its body. Since its per­
formance is so different regardless of its higher-order sensory processing, it implies 
the importance of remembering the past . We can regard recurrent network as com­
promising two characteristics , remembering the past as 'nearest visible/invisible' 
did and optimizing the sensitivity as feedforward network did , although recurrent 
network did not have a perfect memory as 'nearest visible/invisible' . 

3.4 CONVERGENCE TO NEAR-BIFURCATION REGIME 

We plotted the histogram of the performance in each generation and the history of 
the performance of a top-scoring creature over generations. Though they are not 
shown here, the performance was almost optimal after 60 generations. 

Figure 4 shows that two examples of a graph in which we plotted the parameter 
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set (a , b) of top twenty scoring creatures in the 60th generation in the bifurcation 
diagram. In the left graph, we can see the parameter set has converged to a regime 
that gives a near saddle-node bifurcation behavior. On the other hand, in the right 
graph, the parameter set has converged into the inside of cusp. It is interesting 
to note that the area inside of the cusp gives bistable dynamics. Hence, if the 
input is higher than a repelling point, it goes up and if the input is lower , it goes 
down . The reason of the convergence to that area is because of the difference of 
the world setting, that is, a Markov transition matrix. Since food would disappear 
more quickly and stay invisible longer in the setting of the right graph, it should 
be beneficial for a creature to remember the direction of higher inputs longer . In 
most of cases reported in Table 1, we obtained the convergence into our predicted 
regime and/or the inside of the cusp. 

4 DISCUSSION 

Near saddle-node bifurcation behavior can have the long-term maintenance and 
quick transition, which characterize attention dynamics. A recurrent network 
has better performance than memoryless systems for tasks in our simulated non­
stationary environment. Clearly, near saddle-node bifurcation behavior helped a 
creature's survival and in fact, creatures actually evolved to our expected param­
eter regime . However, we also obtained the convergence into another unexpected 
regime which gives bistable dynamics . How the bistable dynamics are used remains 
to be investigated. 
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