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Abstract 

A new approach for clustering is proposed. This method is based 
on an analogy to a physical model; the ferromagnetic Potts model 
at thermal equilibrium is used as an analog computer for this hard 
optimization problem. We do not assume any structure of the un­
derlying distribution of the data. Phase space of the Potts model is 
divided into three regions; ferromagnetic, super-paramagnetic and 
paramagnetic phases. The region of interest is that corresponding 
to the super-paramagnetic one, where domains of aligned spins ap­
pear. The range of temperatures where these structures are stable 
is indicated by a non-vanishing magnetic susceptibility. We use a 
very efficient Monte Carlo algorithm to measure the susceptibil­
ity and the spin spin correlation function. The values of the spin 
spin correlation function, at the super-paramagnetic phase, serve 
to identify the partition of the data points into clusters. 

Many natural phenomena can be viewed as optimization processes, and the drive to 
understand and analyze them yielded powerful mathematical methods. Thus when 
wishing to solve a hard optimization problem, it may be advantageous to apply these 
methods through a physical analogy. Indeed, recently techniques from statistical 
physics have been adapted for solving hard optimization problems (see e.g. Yuille 
and Kosowsky, 1994). In this work we formulate the problem of clustering in terms 
of a ferromagnetic Potts spin model. Using the Monte Carlo method we estimate 
physical quantities such as the spin spin correlation function and the susceptibility, 
and deduce from them the number of clusters and cluster sizes. 
Cluster analysis is an important technique in exploratory data analysis and is ap­
plied in a variety of engineering and scientific disciplines. The problem of partitionaZ 
clustering can be formally stated as follows. With everyone of i = 1,2, ... N pat­
terns represented as a point Xi in a d-dimensional metric space, determine the 
partition of these N points into M groups, called clusters, such that points in a 
cluster are more similar to each other than to points in different clusters. The value 
of M also has to be determined. 
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The two main approaches to partitional clustering are called parametric and non­
parametric. In parametric approaches some knowledge of the clusters' structure is 
assumed (e.g . each cluster can be represented by a center and a spread around 
it) . This assumption is incorporated in a global criterion. The goal is to assign the 
data points so that the criterion is minimized . A typical example is variance min­
imization (Rose, Gurewitz, and Fox, 1993) . On the other hand, in non-parametric 
approaches a local criterion is used to build clusters by utilizing local structure of 
the data. For example, clusters can be formed by identifying high-density regions 
in the data space or by assigning a point and its K -nearest neighbors to the same 
cluster. In recent years many parametric partitional clustering algorithms rooted 
in statistical physics were presented (see e.g. Buhmann and Kiihnel , 1993). In the 
present work we use methods of statistical physics in non-parametric clustering. 

Our aim is to use a physical problem as an analog to the clustering problem. The 
notion of clusters comes very naturally in Potts spin models (Wang and Swendsen, 
1990) where clusters are closely related to ordered regions of spins . We place a Potts 
spin variable Si at each point Xi (that represents one of the patterns), and introduce 
a short range ferromagnetic interaction Jij between pairs of spins, whose strength 
decreases as the inter-spin distance Ilxi - Xj" increases . The system is governed by 
the Hamiltonian (energy function) 

1i = - L hj D8,,8j 

<i,j> 

Si = 1 . .. q , (1) 

where the notation < i, j > stands for neighboring points i and j in a sense that is 
defined later . Then we study the ordering properties of this inhomogeneous Potts 
model. 

As a concrete example , place a Potts spin at each of the data points of fig. 1. 

~~--~------~--------~--------~------~--------~------~--~ 
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Figure 1: This data set is made of three rectangles, each consisting of 800 points 
uniformly distributed , and a uniform rectangular background of lower density, also 
consisting of 800 points. Points classified (with Tclus = 0.08 and () = 0.5) as 
belonging to the three largest clusters are marked by crosses, squares and x's. The 
fourth cluster is of size 2 and all others are single point clusters marked by triangles . 

At high temperatures the system is in a disordered (paramagnetic) phase. As 
the temperature is lowered, larger and larger regions of high density of points (or 
spins) exhibit local ordering, until a phase transition occurs and spins in the three 
rectangular high density regions become completely aligned (i. e. within each region 
all Si take the same value - super-paramagnetic phase) . 
The aligned regions define the clusters which we wish to identify. As the temperature 



418 M. BLATT, S. WISEMAN, E. DOMANY 

is further lowered, a pseudo-transition occurs and the system becomes completely 
ordered (ferromagnetic). 

1 A mean field model 

To support our main idea, we analyze an idealized set of points where the division 
into natural classes is distinct. The points are divided into M groups. The distance 
between any two points within the same group is d1 while the distance between any 
two points belonging to different groups is d2 > d1 (d can be regarded as a similarity 
index). Following our main idea, we associate a Potts spin with each point and an 
interaction J1 between points separated by distance d1 and an h between points 
separated by d2 , where a ~ J2 < J1• Hence the Hamiltonian (1) becomes; 

1{ = - ~ L L 6~; ,~j - ~ L L 6s; ,sj si = 1, ... , q , (2) 
/10 i<j /1o<V i ,j 

where si denotes the ith spin (i = 1, ... , ~) of the lJth group (lJ = 1, ... , M). 
From standard mean field theory for the Potts model (Wu , 1982) it is possible to 
show that the transition from the ferromagnetic phase to the paramagnetic phase 
is at Tc = 2M (qJ.)~Og(q-l) [J1 + (M - 1)h] . The average spin spin correlation 

function, 6~,,~ j at the paramagnetic phase is t for all points Xi and Xj; i. e. the spin 
value at each point is independent of the others. The ferromagnetic phase is further 
divided into two regions. At low temperatures, with high probability, all spins are 
aligned; that is 6~.,sJ ~ 1 for all i and j. At intermediate temperatures, between T* 
and Tc, only spins of the same group lJ are aligned with high probability; 6~" ~'-: ~ 1, 

.' J 

while spins belonging to different groups, Jl and lJ, are independent; 6~1" s~ ~ 1 . 
• ' 1 q 

The spin spin correlation function at the super-paramagnetic phase can be used 
to decide whether or not two spins belong to the same cluster. In contrast with 
the mere inter-point distance, the spin spin correlation function is sensitive to the 
collective behavior of the system and is therefore a suitable quantity for defining 
collective structures (clusters). 
The transition temperature T* may be calculated and shown to be proportional to 
J2 ; T* = a(N, M, q) h. In figure 2 we present the phase diagram, in the (~, ~) 
plane, for the case M = 4, N = 1000 and q = 6. 
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Figure 2: Phase diagram 
of the mean field Potts 
model (2) for the case 
M = 4, N = 1000 and q = 
6. The critical tempera­
ture Tc is indicated by the 
solid line, and the transi­
tion temperature T*, by 
the dashed line. 

The phase diagram fig. 2 shows that the existence of natural classes can manifest 
itself in the thermodynamic properties of the proposed Potts model. Thus our 
approach is supported, provided that a correct choice of the interaction strengths 
is made. 
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2 Definition of local interaction 

In order to minimize the intra-cluster interaction it is convenient to allow an interac­
tion only bet.ween "neighbors". In common \ .... ith other "local met.hods" , we assume 
that there is a 'local length scale' '" a, which is defined by the high density regions 
and is smaller than the typical distance between points in the low density regions. 
This property can be expressed in the ordering properties of the Potts system by 
choosing a short range interaction . Therefore we consider that each point interacts 
only with its neighbors with interaction strength 

__ 1 (!lXi-Xj!l2) 
Jij - J ji - R exp - 2a2 . (3) 

Two points, Xi and Xj, are defined as neighbors if they have a mutual neighborhood 
value J{; that is, if Xi is one of the J{ nearest neighbors of Xj and vice-versa. This 
definition ensures that hj is symmetric; the number of bonds of any site is less 
than J{. We chose the "local length scale", a, to be the average of all distances 
Ilxi - Xj II between pairs i and j with a mutual neighborhood value J{. R is the 
average number of neighbors per site; i. e it is twice the number of non vanishing 
interactions, Jij divided by the number of points N (This careful normalization of 
the interaction strength enables us to estimate the critical temperature Tc for any 
data sample). 

3 Calculation of thermodynanlic quantities 

The ordering properties of the system are reflected by the susceptibility and the 
Spill spin correlation functioll D'<"'<J' where -.. -. stands for a thermal average. These 
quantities can be estimated by averaging over the configurations genel'ated by a 
Monte Carlo procedure. We use the Swendsen-Wang (Wang and Swendsen, 1990) 
Monte Carlo algorithm for the Potts model (1) not only because of its high efficiency, 
but also because it utilizes the SW clusters. As will be explained the SW clusters 
are strongly connected to the clusters we wish to identify. A layman's explanation 
of the method is as follows. The SW procedure stochastically identifies clusters 
of aligned spins, and then flips whole clusters simultaneously. Starting from a 
given spin configuration, SW go over all the bonds between neighboring points, 
and either "freeze" or delete them. A bond connecting two neighboring sites i and 
j, is deleted with probability p~,j = exp( - * 63 .. 3 J and frozen with probability 
p? = 1 - p~,j. Having gone over all the bonds , all spins which have a path of 
frozen bonds connecting them are identified as being in the same SW cluster. Note 
t.hat, according to the definition of p~,j, only spins of the same value can be frozen 
in the same SW cluster. Now a new spin configuration is generated by drawing, for 
each cluster, randomly a value s = 1, ... q, which is assigned to all its spins. This 
procedure defines one Monte Carlo step and needs to be iterated in order to obtain 
thermodynamic averages. 

At temperatures where large regions of correlated spins occur, local methods (e. g. 
Metropolis), which flip one spin at a time, become very slow. The SVl method over­
comes this difficulty by flipping large clusters of aligned spins simult.aneously. Hence 
the SW method exhibits much smaller autocorrelation times than local methods . 
The strong connection between the SW clusters and the ordering properties of the 
Pot.ts spins is manifested in the relation 

-6-- (<1- 1)710+ 1 
_".,8) - q 

(4) 
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where nij = 1 whenever Si and Sj belong to the same SW-cluster and nij = 0 
otherwise. Thus, nij is the probability that Si and Sj belong to the same SW-cluster. 
The r .h.s. of (4) has a smaller variance than its l.h.s., so that the probabilities nij 

provide an improved estimator of the spin spin correlation function. 

4 Locating the super-paramagnetic phase 

In order to locate the temperature range in which the system IS III the super­
paramagnetic phase we measure the susceptibility of the system which is propor­
tional to the variance of the magnetization 

N- 2 
X = T (m2 - m ) . (5) 

The magnetization, m , is defined as 

qNmax/N -1 
m=------

q-1 
(6) 

where NJ.' is the number of spins with the value J.l. 
In the ferromagnetic phase the fluctuations of the magnetization are negligible, 
so the susceptibility, X, is small. As the temperature is raised, a sudden in­
crease of the susceptibility occurs at the transition from the ferromagnetic to the 
super-paramagnetic phase. The susceptibility is non-vanishing only in the super­
paramagnetic phase, which is the only phase where large fluctuations in the mag­
netization can occur. The point where the susceptibility vanishes again is an upper 
bound for the transition temperature from the super-paramagnetic to the param­
agnetic phase. 

5 The clustering procedure 

Our method consists of two main steps. First we identify the range of temperatures 
where the clusters may be observed (that corresponding to the super-paramagnetic 
phase) and choose a temperature within this range. Secondly, the clusters are 
identified using the information contained in the spin spin correlation function at 
this temperature. The procedure is summarized here, leaving discussion concerning 
the choice of the parameters to a later stage. 

(a) Assign to each point Xi a q-state Potts spin variable Si. q was chosen equal to 
20 in the example that we present in this work. 

(b) Find all the pairs of points having mutual neighborhood value K. We set K = 10. 

(c) Calculate the strength of the interactions using equation (3). 

(d) Use the SW procedure with the Hamiltonian (1) to calculate the susceptibility X 
for various temperatures. The transition temperature from the paramagnetic phase 

_ 1 

can be roughly estimated by Tc ~ 410;(1~A)' 

(e) Identify the range of temperatures of non-vanishing X (the super-paramagnetic 
phase). Identify the temperature Tmax where the susceptibility X is maximal , and 
the temperature Tvanish, where X vanishes at the high temperature side. The opti­
mal temperature to identify the clusters lies between these two temperatures. As a 
rule of thumb we chose the "clustering temperature" Tcltl~ = Tvan .. ~+Tma.r but the 
results depend only weakly on Tclu~, as long as T cltls is in the super-paramagnetic 
range, Tmax < Tcltl~ < Tvani~h. 
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(f) At the clustering temperature Tclu s , estimate the spin spin correlation, o s "s J ' for 
all neigh boring pairs of points Xi and Xj, using (4) . 

(g) Clusters are identified according to a thresholding procedure. The spin spin 
correlation function 03. ,3J of points Xi and Xj is compared with a threshold, () ; if 
OS,, 3J > () they are defined as "friends". Then all mutual friends (including fl'iends 
of friends , etc) are assigned to the same cluster. We chose () = 0.5 . 

In order to show how this algorithm works, let us consider the distribution of points 
presented in figure 1. Because of the overlap of the larger sparse rectangle with the 
smaller rectangles, and due to statistical fluctuations, the three dense rectangles 
actually contain 883, 874 and 863 points. 
Going through steps (a) to (d) we obtained the susceptibility as a function of the 
temperature as presented in figure 3. The susceptibility X is maximal at T max = 0.03 
and vanishes at Tvanish = 0.13 . In figure 1 we present the clusters obtained accord­
ing to steps (f) and (g) at Tclus = 0.08. The size of the largest clusters in descending 
order is 900 , 894, 877, 2 and all the rest are composed of only one point. The three 
biggest clusters correspond to the clusters we are looking for, while the background 
is decomposed into clusters of size one. 
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Figure 3: The susceptibil­
ity density x;;. as a func­
tion of t.he t.emperature. 

Let us discuss the effect of the parameters on the procedure. The number of Potts 
states, q, determines mainly the sharpness of the transition and the critical temper­
ature . The higher q, the sharper the transition . On the other hand, it is necessary 
to perform more statistics (more SW sweeps) as the value of q increases . From our 
simulations, we conclude that the influence of q is very weak . The maximal number 
of neighbors, f{, also affects the results very little; we obtained quite similar results 
for a wide range of f{ (5 ~ f{ ~ 20). 
No dramatic changes were observed in the classification, when choosing clustering 
temperatures Tc1u3 other than that suggested in (e). However this choice is clearly 
ad-hoc and a better choice should be found. Our method does not provide a natu­
ral way to choose a threshold () for the spin spin correlation function. In practice 
though, the classification is not very sensitive to the value of (), and values in the 
range 0.2 < () < 0.8 yield similar results. The reason is that the frequency distri­
bution of the values of the spin spin correlation function exhibit.s t.wo peaks, one 
close to 1 and the other close to 1, while for intermediate values it is verv close q v 

t.o zero . In figure (4) we present the average size of the largest S\V cluster as a 
function of the temperature , along with the size of the largest cluster obtained by 
the thresholding procedUl'e (described in (7)) using three different threshold values 
() = 0.1, 0 . .5 , o .~). Not.e the agreement. between the largest clust.er size defined by t.he 
threshold e = 0.5 and the average size of the largest SW cluster for all t.emperatures 
(This agreement holds for the smaller clusters as well) . It support.s our thresholding 
procedure as a sensible one at all temperatUl'es . 
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Figure 4: Average size of 
the largest SW cluster as 
a function of the temper­
ature , is denoted by the 
solid line. The triangles, 
x's and squares denote the 
size of the largest cluster 
obtained with thresholds 
() = 0.2, 0.5 and 0.9 re­
spectively. 

Other methods that were proposed previously, such as Fukunaga's (1990) , can be 
formulated as a Metropolis relaxation of a ferromagnetic Potts model at T = O. 
The clusters are then determined by the points having the same spin value at the 
local minima of the energy at which the relaxation process terminates. Clearly this 
procedure depends strongly on the initial conditions. There is a high probability of 
getting stuck in a metastable state that does not correspond to the desired answer. 
Such a T = 0 method does not provide any way to distinguish between "good" and 
"bad" metastable states. We applied Fukunaga's method on the data set of figure 
(1) using many different initial conditions. The right answer was never obtained. 
In all runs, domain walls that broke a cluster into two or more parts appeared. 
Our method generalizes Fukunaga's method by introducing a finite temperature at 
which the division into clusters is stable. In addition, the SW dynamics are com­
pletely insensitive to the initial conditions and extremely efficient . 
Work in progress shows that our method is especially suitable for hierarchical clus­
tering. This is done by identifying clusters at several temperatures which are chosen 
according to features of the susceptibility curve. In particular our method is suc­
cessful in dealing with "real life" problems such as the Iris data and Landsat data. 
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