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Abstract 

No finite sample is sufficient to determine the density, and therefore 
the entropy, of a signal directly. Some assumption about either the 
functional form of the density or about its smoothness is necessary. 
Both amount to a prior over the space of possible density functions. 
By far the most common approach is to assume that the density 
has a parametric form. 

By contrast we derive a differential learning rule called EMMA 
that optimizes entropy by way of kernel density estimation. En
tropy and its derivative can then be calculated by sampling from 
this density estimate. The resulting parameter update rule is sur
prisingly simple and efficient. 

We will show how EMMA can be used to detect and correct cor
ruption in magnetic resonance images (MRI). This application is 
beyond the scope of existing parametric entropy models. 

1 Introduction 

Information theory is playing an increasing role in unsupervised learning and visual 
processing. For example, Linsker has used the concept of information maximization 
to produce theories of development in the visual cortex (Linsker, 1988). Becker and 
Hinton have used information theory to motivate algorithms for visual processing 
(Becker and Hinton, 1992). Bell and Sejnowski have used information maximization 
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to solve the "cocktail party" or signal separation problem (Bell and Sejnowski, 
1995). In order to simplify analysis and implementation, each of these techniques 
makes specific assumptions about the nature of the signals used, typically that the 
signals are drawn from some parametric density. In practice, such assumptions are 
very inflexible. 

In this paper we will derive a procedure that can effectively estimate and manip
ulate the entropy of a wide variety of signals using non-parametric densities. Our 
technique is distinguished by is simplicity, flexibility and efficiency. 

We will begin with a discussion of principal components analysis (PCA) as an exam
ple of a simple parametric entropy manipulation technique. After pointing out some 
of PCA's limitation, we will then derive a more powerful non-parametric entropy 
manipulation procedure. Finally, we will show that the same entropy estimation 
procedure can be used to tackle a difficult visual processing problem. 

1.1 Parametric Entropy Estimation 

Typically parametric entropy estimation is a two step process. We are given a 
parametric model for the density of a signal and a sample. First, from the space 
of possible density functions the most probable is selected. This often requires a 
search through parameter space. Second, the entropy of the most likely density 
function is evaluated. 

Parametric techniques can work well when the assumed form of the density matches 
the actual data. Conversely, when the parametric assumption is violated the result
ing algorithms are incorrect. The most common assumption, that the data follow the 
Gaussian density, is especially restrictive. An entropy maximization technique that 
assumes that data is Gaussian, but operates on data drawn from a non-Gaussian 
density, may in fact end up minimizing entropy. 

1.2 Example: Principal Components Analysis 

There are a number of signal processing and learning problems that can be formu
lated as entropy maximization problems. One prominent example is principal com
ponent analYllill (PCA). Given a random variable X, a vector v can be used to define 
a new random variable, Y" = X . v with variance Var(Y,,) = E[(X . v - E[X . v])2]. 
The principal component v is the unit vector for which Var(Yv) is maximized. 

In practice neither the density of X nor Y" is known. The projection variance is 
computed from a finite sample, A, of points from X, 

Var(Y,,) ~ Var(Y,,) == EA[(X . v - EA[X . v])2] , (1) 
A 

where VarA(Y,,) and E A [·] are shorthand for the empirical variance and mean eval
uated over A. Oja has derived an elegant on-line rule for learning v when presented 
with a sample of X (Oja, 1982). 

Under the assumption that X is Gaussian is is easily proven that Yv has maximum 
entropy. Moreover, in the absence of noise, Yij, contains maximal information about 
X. However, when X is not Gaussian Yij is generally not the most informative 
projection. 

2 Estimating Entropy with Parzen Densities 

We will now derive a general procedure for manipulating and estimating the entropy 
of a random variable from a sample. Given a sample of a random variable X, we can 
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construct another random variable Y = F(X,l1). The entropy, heY), is a function of 
v and can be manipulated by changing 11. The following derivation assumes that Y is 
a vector random variable. The joint entropy of a two random variables, h(Wl' W2), 
can be evaluated by constructing the vector random variable, Y = [Wl' w2 jT and 
evaluating heY). 

Rather than assume that the density has a parametric form, whose parameters are 
selected using maximum likelihood estimation, we will instead use Parzen window 
density estimation (Duda and Hart, 1973). In the context of entropy estimation, the 
Parzen density estimate has three significant advantages over maximum likelihood 
parametric density estimates: (1) it can model the density of any signal provided 
the density function is smooth; (2) since the Parzen estimate is computed directly 
from the sample, there is no search for parameters; (3) the derivative of the entropy 
of the Parzen estimate is simple to compute. 

The form of the Parzen estimate constructed from a sample A is 

p.(y, A) = ~A I: R(y - YA) = EA[R(y - YA)] , 
YAEA 

(2) 

where the Parzen estimator is constructed with the window function R(·) which 
integrates to 1. We will assume that the Parzen window function is a Gaussian 
density function. This will simplify some analysis, but it is not necessary. Any 
differentiable function could be used. Another good choice is the Cauchy density. 

Unfortunately evaluating the entropy integral 

hey) ~ -E[log p.(~, A)] = - i: log p.(y, A)dy 

is inordinately difficult. This integral can however be approximated as a sample 
mean: 

(3) 
where EB{ ] is the sample mean taken over the sample B. The sample mean 
converges toward the true expectation at a rate proportional to 1/ v' N B (N B is 
the size of B). To reiterate, two samples can be used to estimate the entropy of a 
density: the first is used to estimate the density, the second is used to estimate the 
entropyl. We call h· (Y) the EMMA estimate of entropy2. 

One way to extremize entropy is to use the derivative of entropy with respect to v. 
This may be expressed as 

~h(Y) ~ ~h·(Y) = __ 1_ '" LYAEA f;gt/J(YB - YA) (4) 
dl1 dv N B L....iB Ly EA gt/J(YB - YA) 

YBE A 

1 d 1 
= NB I: I: Wy (YB , YA) dl1 "2 Dt/J(YB - YA), (5) 

YBEB YAEA 

_ gt/J(Yl - Y2) 
where WY(Yl' Y2) = L ( ) , (6) 

YAEA gt/J Yl - YA 

Dt/J(Y) == yT.,p-ly, and gt/J(Y) is a multi-dimensional Gaussian with covariance .,p. 
Wy(Yl' Y2) is an indicator of the degree of match between its arguments, in a "soft" 

lUsing a procedure akin to leave-one-out cross-validation a single sample can be used 
for both purposes. 

2EMMA is a random but pronounceable subset of the letters in the words "Empirical 
entropy Manipulation and Analysis". 
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sense. It will approach one if Yl is significantly closer to Y2 than any element of A. 
To reduce entropy the parameters v are adjusted such that there is a reduction in 
the average squared distance between points which Wy indicates are nearby. 

2.1 Stochastic Maximization Algorithm 

Both the calculation of the EMMA entropy estimate and its derivative involve a 
double summation. As a result the cost of evaluation is quadratic in sample size: 
O(NANB). While an accurate estimate of empirical entropy could be obtained by 
using all of the available data (at great cost), a stochastic estimate of the entropy 
can be obtained by using a random subset of the available data (at quadratically 
lower cost). This is especially critical in entropy manipulation problems, where the 
derivative of entropy is evaluated many hundreds or thousands of times. Without 
the quadratic savings that arise from using smaller samples entropy manipulation 
would be impossible (see (Viola, 1995) for a discussion of these issues). 

2.2 Estimating the Covariance 

In addition to the learning rate .A, the covariance matrices of the Parzen window 
functions, g,p, are important parameters of EMMA. These parameters may be cho
sen so that they are optimal in the maximum likelihood sense. For simplicity, we 
assume that the covariance matrices are diagonal,.,p = DIAG(O"~,O"~, ... ). Follow
ing a derivation almost identical to the one described in Section 2 we can derive an 
equation analogous to (4), 

d. 1"" "" ( 1 ) ([y]~ ) -h (Y) = - L...J L...J WY(YB' YA) - -- - 1 
dO"k N B b O"k O"~ 

YsE YAEa 

(7) 

where [Y]k is the kth component of the vector y. The optimal, or most likely, 
.,p minimizes h· (Y). In practice both v and .,p are adjusted simultaneously; for 
example, while v is adjusted to maximize h· (YlI ), .,p is adjusted to minimize h· (y,,). 

3 Principal Components Analysis and Information 

As a demonstration, we can derive a parameter estimation rule akin to principal 
components analysis that truly maximizes information. This new EMMA based 
component analysis (ECA) manipulates the entropy of the random variable Y" = 
X·v under the constraint that Ivl = 1. For any given value of v the entropy of Yv can 
be estimated from two samples of X as: h·(Yv ) = -EB[logEA[g,p(xB·v - XA· v)]], 
where .,p is the variance of the Parzen window function. Moreover we can estimate 
the derivative of entropy: 

d~ h·(YlI ) = ; L L Wy(YB, YA) .,p-l(YB - YA)(XB - XA) , 
B B A 

where YA = XA . v and YB = XB . v. The derivative may be decomposed into parts 
which can be understood more easily. Ignoring the weighting function Wy.,p-l we 
are left with the derivative of some unknown function f(y"): 

d 1 
dvf(Yv ) = N N L L(YB - YA)(XB - XA) (8) 

B A B A 

What then is f(y")? The derivative of the squared difference between samples is: 
d~ (YB - YA)2 = 2(YB - YA)(XB - XA) . So we can see that 

f(Y,,) = 2N IN L L(YB - YA)2 
B A B A 



Empirical Entropy Manipulation for Real-world Problems 

3 

2 

o 

-I 

-2 •• t 

-3 

-4 -2 

• I 

o 

: . 
ECA-MIN 

ECA-MAX 
BCM 

BINGO 
PCA 

2 4 

Figure 1: See text for description. 
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is one half the expectation of the squared difference between pairs of trials of Yv • 

Recall that PCA searches for the projection, Yv , that has the largest sample vari
ance. Interestingly, f(Yv ) is precisely the sample variance. Without the weighting 
term Wll ,p-l, ECA would find exactly the same vector that PCA does: the max
imum variance projection vector. However because of Wll , the derivative of ECA 
does not act on all points of A and B equally. Pairs of points that are far apart are 
forced no further apart. Another way of interpreting ECA is as a type of robust 
variance maximization. Points that might best be interpreted as outliers, because 
they are very far from the body of other points, playa very small role in the mini
mization. This robust nature stands in contrast to PCA which is very sensitive to 
outliers. 

For densities that are Gaussian, the maximum entropy projection is the first prin
cipal component. In simulations ECA effectively finds the same projection as PCA, 
and it does so with speeds that are comparable to Oja's rule. ECA can be used both 
to find the entropy maximizing (ECA-MAX) and minimizing (ECA-MIN) axes. For 
more complex densities the PCA axis is very different from the entropy maximizing 
axis. To provide some intuition regarding the behavior of ECA we have run ECA
MAX, ECA-MIN, Oja's rule, and two related procedures, BCM and BINGO, on 
the same density. BCM is a learning rule that was originally proposed to explain 
development of receptive fields patterns in visual cortex (Bienenstock, Cooper and 
Munro, 1982). More recently it has been argued that the rule finds projections 
that are far from Gaussian (Intrator and Cooper, 1992). Under a limited set of 
conditions this is equivalent to finding the minimum entropy projection. BINGO 
was proposed to find axes along which there is a bimodal distribution (Schraudolph 
and Sejnowski, 1993). 

Figure 1 displays a 400 point sample and the projection axes discussed above. The 
density is a mixture of two clusters. Each cluster has high kurtosis in the horizontal 
direction. The oblique axis projects the data so that it is most uniform and hence 
has the highest entropy; ECA-MAX finds this axis. Along the vertical axis the 
data is clustered and has low entropy; ECA-MIN finds this axis. The vertical axis 
also has the highest variance. Contrary to published accounts, the first principal 
component can in fact correspond to the minimum entropy projection. BCM, while 
it may find minimum entropy projections for some densities, is attracted to the 
kurtosis along the horizontal axis. For this distribution BCM neither minimizes nor 
maximizes entropy. Finally, BINGO successfully discovers that the vertical axis is 
very bimodal. 
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Figure 2: At left: A slice from an MRI scan of a head. Center: The scan after 
correction. Right: The density of pixel values in the MRI scan before and after 
correction. 

4 Applications 

EMMA has proven useful in a number of applications. In object recognition EMMA 
has been used align 3D shape models with video images (Viola and Wells III, 1995). 
In the area of medical imaging EMMA has been used to register data that arises 
from differing medical modalities such as magnetic resonance images, computed 
tomography images, and positron emission tomography (Wells, Viola and Kikinis, 
1995). 

4.1 MRI Processing 

In addition, EMMA can be used to process magnetic resonance images (MRI). 
An MRI is a 2 or 3 dimensional image that records the density of tissues inside the 
body. In the head, as in other parts of the body, there are a number of distinct tissue 
classes including: bone, water, white matter, grey matter, and fat. ~n principle the 
density of pixel values in an MRI should be clustered, with one cluster for each 
tissue class. In reality MRI signals are corrupted by a bias field, a multiplicative 
offset that varies slowly in space. The bias field results from unavoidable variations 
in magnetic field (see (Wells III et al., 1994) for an overview of this problem). 

Because the densities of each tissue type cluster together tightly, an uncorrupted 
MRI should have relatively low entropy. Corruption from the bias field perturbs 
the MRI image, increasing the values of some pixels and decreasing others. The 
bias field acts like noise, adding entropy to the pixel density. We use EMMA to find 
a low-frequency correction field that when applied to the image, makes the pixel 
density have a lower entropy. The resulting corrected image will have a tighter 
clustering than the original density. 

Call the uncorrupted scan s(z); it is a function of a spatial random variable z. The 
corrupted scan, c( x) = s( z) + b( z) is a sum of the true scan and the bias field. There 
are physical reasons to believe b( x) is a low order polynomial in the components of 
z. EMMA is used to minimize the entropy of the corrected signal, h( c( x) - b( z, v», 
where b( z, v), a third order polynomial with coefficients v, is an estimate for the 
bias corruption. 

Figure 2 shows an MRI scan and a histogram of pixel intensity before and after 
correction. The difference between the two scans is quite subtle: the uncorrected 
scan is brighter at top right and dimmer at bottom left. This non-homogeneity 
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makes constructing automatic tissue classifiers difficult. In the histogram of the 
original scan white and grey matter tissue classes are confounded into a single peak 
ranging from about 0.4 to 0.6. The histogram of the corrected scan shows much 
better separation between these two classes. For images like this the correction field 
takes between 20 and 200 seconds to compute on a Sparc 10. 

5 Conclusion 

We have demonstrated a novel entropy manipulation technique working on problems 
of significant complexity and practical importance. Because it is based on non
parametric density estimation it is quite flexible, requiring no strong assumptions 
about the nature of signals. The technique is widely applicable to problems in 
signal processing, vision and unsupervised learning. The resulting algorithms are 
computationally efficient. 
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