
A Neural Network Classifier for
the 11000 OCR Chip

John C. Platt and Timothy P. Allen
Synaptics, Inc.

2698 Orchard Parkway
San Jose, CA 95134

platt@synaptics.com, tpa@synaptics.com

Abstract

This paper describes a neural network classifier for the 11000 chip, which
optically reads the E13B font characters at the bottom of checks. The
first layer of the neural network is a hardware linear classifier which
recognizes the characters in this font . A second software neural layer
is implemented on an inexpensive microprocessor to clean up the re­
sults of the first layer. The hardware linear classifier is mathematically
specified using constraints and an optimization principle. The weights
of the classifier are found using the active set method, similar to Vap­
nik's separating hyperplane algorithm. In 7.5 minutes ofSPARC 2 time,
the method solves for 1523 Lagrange mUltipliers, which is equivalent to
training on a data set of approximately 128,000 examples . The result­
ing network performs quite well: when tested on a test set of 1500 real
checks, it has a 99.995% character accuracy rate.

1 A BRIEF OVERVIEW OF THE 11000 CHIP

At Synaptics, we have created the 11000, an analog VLSI chip that, when combined
with associated software, optically reads the E13B font from the bottom of checks.
This E13B font is shown in figure 1. The overall architecture of the 11000 chip
is shown in figure 2. The 11000 recognizes checks hand-swiped through a slot. A
lens focuses the image of the bottom of the check onto the retina. The retina has
circuitry which locates the vertical position of the characters on the check . The
retina then sends an image vertically centered around a possible character to the
classifier.

The classifier in the nooo has a tough job. It must be very accurate and immune
to noise and ink scribbles in the input . Therefore , we decided to use an integrated
segmentation and recognition approach (Martin & Pittman, 1992)(Platt, et al.,
1992). When the classifier produces a strong response, we know that a character is
horizontally centered in the retina.

A Neural Network Classifier for the 11000 OCR Chip 939

Figure 1: The E13B font, as seen by the 11000 chip

11000 chip
~----------l

I I
I linear winner I

retina take I mIcroprocessor

G __ ~ ~l:i:r __ ~l_ J i
Slot
for

check

18 by 24 image best character
vertically positioned hypothesis

42 confidences

Figure 2: The overall architecture of the 11000 chip

We decided to use analog VLSI to minimize the silicon area of the classifier. Be­
cause of the analog implementation, we decided to use a linear template classifier ,
with fixed weights in silicon to minimize area. The weights are encoded as lengths
of transistors acting as current sources . We trained the classifier using only the
specification of the font , because we did not have the real E13B data at the time of
classifier design . The design of the classifier is described in the next section.

As shown in figure 2, the input to the classifier is an 18 by 24 pixel image taken
from the retina at a rate of 20 thousand frames per second. The templates in the
classifier are 18 by 22 pixels. Each template is evaluated in three different vertical
positions , to allow the retina to send a slightly vertically mis-aligned character . The
output of the classifier is a set of 42 confidences, one for each of the 14 characters in
the font in three different vertical positions. These confidences are fed to a winner­
take-all circuit (Lazzaro , et al. , 1989), which finds the confidence and the identity
of the best character hypothesis.

2 SPECIFYING THE BEHAVIOR OF THE CLASSIFIER

Let us consider the training of one template corresponding to one of the characters
in the font. The template takes a vector of pixels as input . For ease of analog
implementation, the template is a linear neuron with no bias input:

(1)

where 0 is the output of the template, Wi are the weights of the template, and Ii
are the input pixels of the template.

We will now mathematically express the training of the templates as three types
of constraints on the weights of the template . The input vectors used by these
constraints are the ideal characters taken from the specification of the font .

The first type of constraint on the template is that the output of the template
should be above 1 when the character that corresponds to the template is centered

940 1. C. PLAIT, T. P. ALLEN

I ! I I !
Figure 3: Examples of images from the bad set for the templates trained to detect
the zero character. These images are E13B characters that have been horizontally
and vertically offset from the center of the image. The black border around each of
the characters shows the boundary of the input field. Notice the variety of horizontal
and vertical shifts of the different characters.

in the horizontal field. Call the vector of pixels of this centered character Gi . This
constraint is stated as:

(2)

The second type of constraint on the template is to have an output much lower than
1 when incorrect or offset characters are applied to the template. We collect these
incorrect and offset characters into a set of pixel vectors jjj, which we call the "bad
set." The constraint that the output of the template be lower than a constant c for
all of the vectors in the bad set is expressed as :

L wiBf :s c Vj (3)

Together, constraints (2) and (3) permit use of a simple threshold to distinguish
between a positive classifier response and a negative one.

The bad set contains examples of the correct character for the template that are
horizontally offset by at least two pixels and vertically offset by up to one pixel. In
addition, examples of all other characters are added to the bad set at every horizon­
tal offset and with vertical offsets of up to one pixel (see figure 3). Vertically offset
examples are added to make the classifier resistant to characters whose baselines
are slightly mismatched.

The third type of constraint on the template requires that the output be invariant
to the addition of a constant to all of the input pixels. This constraint makes the
classifier immune to any changes in the background lighting level, k. This constraint
is equivalent to requiring the sum of the weights to be zero:

(4)

Finally, an optimization principle is necessary to choose between all possible weight
vectors that fulfill constraints (2), (3), and (4). We minimize the perturbation of
the output of the template given uncorrelated random noise on the input. This
optimization principle is similar to training on a large data set, instead of simply
the ideal characters described by the specification. This optimization principle is
equivalent to minimizing the sum of the square of the weights:

minLWl (5)

Expressing the training of the classifier as a combination of constraints and an
optimization principle allows us to compactly define its behavior. For example,
the combination of constraints (3) and (4) allows the classifier to be immune to
situations when two partial characters appear in the image at the same time. The
confluence of two characters in the image can be described as:

I?verlap = k + B! + B':
, 'I (6)

A Neural Network Classifier for the 11000 OCR Chip 941

where k is a background value and B! and B[are partial characters from the bad
set that appears on the left side and right side of the image, respectively. The
output of the template is then:

ooverlap = 2: Wi(k + BI + BD = 2: Wjk + 2: wiBI + 2: WiB[< 2c (7)

Constraints (3) and (4) thus limit the output of the neuron to less than 2c when
two partial characters appear in the input. Therefore, we want c to be less than
0.5. In order to get a 2:1 margin, we choose c = 0.25.

The classifier is trained only on individual partial characters instead of all possible
combinations of partial characters. Therefore, we can specify the classifier using
only 1523 constraints, instead of creating a training set of approximately 128,000
possible combinations of partial characters. Applying these constraints is therefore
much faster than back-propagation on the entire data set.

Equations (2), (3) and (5) describe the optimization problem solved by Vapnik
(Vapnik, 1982) for constructing a hyperplane that separates two classes. Vapnik
solves this optimization problem by converting it into a dual space, where the in­
equality constraints become much simpler. However, we add the equality constraint
(4), which does not allow us to directly use Vapnik's dual space method. To over­
come this limitation, we use the active set method, which can fulfill any extra linear
equality or inequality constraints. The active set method is described in the next
section.

3 THE ACTIVE SET METHOD

Notice that constraints (2), (3), and (4) are all linear in Wi. Therefore, minimiz­
ing (5) with these constraints is simply quadratic programming with a mixture of
equality and inequality constraints. This problem can be solved using the active set
method from optimization theory (Gill, et al., 1981).

When the quadratic programming problem is solved, some of the inequality con­
straints and all of the equality constraints will be "active." In other words, the ac­
tive constraints affect the solution as equality constraints . The system has "bumped
into" these constraints. All other constraints will be inactive; they will not affect
the solution.

Once we know which constraints are active, we can easily solve the quadratic mini­
mization problem with equality constraints via Lagrange multipliers . The solution
is a saddle point of the function:

~ 2: wl + 2: Ak(2: Akj Wj - Ck) (8)
i k i

where Ak is the Lagrange multiplier of the kth active constraint, and Akj and Ck
are the linear and constant coefficients of the kth active constraint. For example,
if constraint (2) is the kth active constraint, then Ak = G and Ck = 1. The saddle
point can be found via the set of linear equations:

Wi - 2: AkAki (9)
k

- 2)2: AjiAki)-lCj (10)
j

The active set method determines which inequality constraints belong in the active
set by iteratively solving equation (10) above. At every step, one inequality con­
straint is either made active, or inactive. A constraint can be moved to the active

942 J. C. PLAIT, T. P. ALLEN

Action: move X to here, make constraint 13 inactive

ro • ~
L A13=0

on this line

1 .. solution from
\. equation (10)

constramt 19
violated on this line X space

Figure 4: The position along the step where the constraints become violated or the
Lagrange multipliers become zero can be computed analytically. The algorithm then
takes the largest possible step without violating constraints or having the Lagrange
multipliers become zero.

set if the inequality constraint is violated. A constraint can be moved off the active
set if its Lagrange multiplier has changed sign 1 .

Each step of the active set method attempts to adjust the vector of Lagrange mul­
tipliers to the values provided by equation (10). Let us parameterize the step from
the old to the new Lagrange multipliers via a parameter a:

X = XO + a8X (11)

where Xo is the vector of Lagrange multipliers before the step, 8X is the step, and
when a = 1, the step is completed. Now, the amount of constraint violation and the
Lagrange multipliers are linear functions of this a. Therefore, we can analytically
derive the a at which a constraint is violated or a Lagrange multiplier changes sign
(see figure 4). For currently inactive constraints, the a for constraint violation is:

Ck + Lj AJ Li AjiAki
ak = - (12)

Lj 8Aj Li AjiAki

For a currently active constraint, the a for a Lagrange multiplier sign change is
simply:

(13)

We choose the constraint that has a smallest positive ak. If the smallest ak is
greater than 1, then the system has found the solution, and the final weights are
computed from the Lagrange multipliers at the end of the step. Otherwise, if the kth
constraint is active, we make it inactive, and vice versa. We then set the Lagrange
multipliers to be the interpolated values from equation (11) with a = ak. We finally
re-evaluate equation (10) with the updated active set2 .

When this optimization algorithm is applied to the E13B font, the templates that
result are shown in figure 5. When applied to characters that obey the specification,
the classifier is guaranteed to give a 2:1 margin between the correct peak and any
false peak caused by the confluence of two partial characters. Each template has
1523 constraints and takes 7.5 minutes on a SPARe 2 to train. Back-propagation on
the 128,000 training examples that are equivalent to the constraints would obviously
require much more computation time.

IThe sign of the Lagrange multiplier indicates on which side of the inequality constraint
the constrained minimum lies.

2 For more details on active set methods, such as how to recognize infeasible constraints,
consult (Gill, et al., 1981).

A Neural Network Classifier for the 11000 OCR Chip 943

Figure 5: The weights for the fourteen E13B templates. The light pixels correspond
to positive weights, while the dark pixels correspond to negative weights.

14 output neurons

history of
11000 outputs

pinger neuron

~
spatial window

of 15 pixels

2 hidden neurons

14 outputs
of the 11000
(Every vertical column
contains 13 zeros)

Figure 6: The software second layer

4 THE SOFTWARE SECOND LAYER

As a test of the linear classifier, we fabricated the 11000 and tested it with E 13B
characters on real checks. The system worked when the printing on the check obeyed
the contrast specification of the font. However, some check printing companies use
very light or very dark printing. Therefore, there was no single threshold that could
consistently read the lightly printed checks without hallucinating characters on the
dark checks. The retina shown in figure 2 does not have automatie gain control
(AGC). One solution would have been to refabricate the chip using an AGC retina.
However, we opted for a simpler solution.

The output of the 11000 chip is a 2-bit confidence level and a character code that
is sent to an inexpensive microprocessor every 50 microseconds. Because this out­
put bandwidth is low, it is feasible to put a small software second layer into this
microprocessor to post-process and clean up the output of the 11000.

The architecture of this software second layer is shown in figure 6. The input to
the second layer is a linearly time-warped history of the output of the 11000 chip.
The time warping makes the second layer immune to changes in the velocity of the
check in the slot. There is one output neuron that is a "pinger." That is, it is
trained to turn on when the input to the 11000 chip is centered over any character
(Platt, et al. , 1992) (Martin & Pittman, 1992). There are fourteen other neurons
that each correspond to a character in the font. These neurons are trained to turn
on when the appropriate character is centered in the field, and otherwise turn off.
The classification output is the output of the fourteen neurons only when the pinger
neuron is on. Thus, the pinger neuron aids in segmentation.

Considering the entire network spanning both the hardware first layer and software

944 J. C. PLATT. T. P. ALLEN

second layer, we have constructed a non-standard TDNN (Waibel, et. al., 1989)
which recognizes characters.

We trained the second layer using standard back-propagation, with a training set
gathered from real checks. Because the nooo output bandwidth is quite low, col­
lecting the data and training the network was not onerous. The second layer was
trained on a data set of approximately 1000 real checks.

5 OVERALL PERFORMANCE

When the hardware first layer in the 11000 is combined with the software second
layer, the performance of the system on real checks is quite impressive. We gathered
a test set of 1500 real checks from across the country. This test set contained a
variety of light and dark checks with unusual backgrounds. We swiped this test set
through one system. Out of the 1500 test checks, the system only failed to read 2,
due to staple holes in important locations of certain characters. As such , this test
yielded a 99.995% character accuracy on real data.

6 CONCLUSIONS

For the 11000 analog VLSI OCR chip, we have created an effective hardware linear
classifier that recognizes the E13B font. The behavior of this classifier was specified
using constrained optimization. The classifier was designed to have a predictable
margin of classification, be immune to lighting variations, and be resistant to ran­
dom input noise. The classifier was trained using the active set method, which is an
enhancement of Vapnik's separating hyperplane algorithm. We used the active set
method to find the weights of a template in 7.5 minutes of SPARC 2 time, instead of
training on a data set with 128,000 examples. To make the overall system resistant
to contrast variation, we separately trained a software second layer on top of this
first hardware layer, thereby constructing a non-standard TDNN.

The application discussed in this paper shows the utility of using the active set
method to very rapidly create either a stand-alone linear classifier or a first layer of
a multi-layer network.

References

P. Gill, W. Murray, M. Wright (1981), Practical Optimization, Section 5.2, Aca­
demic Press .

J. Lazzaro, S. Ryckebusch, M. Mahowald, C. Mead (1989), "Winner-Take-All Net­
works of O(N) Complexity," Advances in Neural Information Processing Systems,
1, D. Touretzky, ed., Morgan-Kaufmann, San Mateo, CA.

G. Martin, M. Rashid (1992), "Recognizing Overlapping Hand-Printed Characters
by Centered-Object Integrated Segmentation and Recognition," Advances in Neural
Information Processing Systems, 4, Moody, J., Hanson, S., Lippmann, R., eds.,
Morgan-Kaufmann, San Mateo, CA.

J. Platt, J. Decker, and J. LeMoncheck (1992), Convolutional Neural Networks for
the Combined Segmentation and Recognition of Machine Printed Characters, USPS
5th Advanced Technology Conference, 2, 701-713.

V. Vapnik (1982), Estimation of Dependencies Based on Empirical Data, Adden­
dum I, Section 2, Springer-Verlag.

A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, K. Lang (1989), "Phoneme
Recognition Using Time-Delay Neural Networks," IEEE Transactions on Acous­
tics, Speech, and Signal Processing, vol. 37, pp. 328-339.

