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Abstract 

This paper describes a neural network classifier for the 11000 chip, which 
optically reads the E13B font characters at the bottom of checks. The 
first layer of the neural network is a hardware linear classifier which 
recognizes the characters in this font . A second software neural layer 
is implemented on an inexpensive microprocessor to clean up the re­
sults of the first layer. The hardware linear classifier is mathematically 
specified using constraints and an optimization principle. The weights 
of the classifier are found using the active set method, similar to Vap­
nik's separating hyperplane algorithm. In 7.5 minutes ofSPARC 2 time, 
the method solves for 1523 Lagrange mUltipliers, which is equivalent to 
training on a data set of approximately 128,000 examples . The result­
ing network performs quite well: when tested on a test set of 1500 real 
checks, it has a 99.995% character accuracy rate. 

1 A BRIEF OVERVIEW OF THE 11000 CHIP 

At Synaptics, we have created the 11000, an analog VLSI chip that, when combined 
with associated software, optically reads the E13B font from the bottom of checks. 
This E13B font is shown in figure 1. The overall architecture of the 11000 chip 
is shown in figure 2. The 11000 recognizes checks hand-swiped through a slot. A 
lens focuses the image of the bottom of the check onto the retina. The retina has 
circuitry which locates the vertical position of the characters on the check . The 
retina then sends an image vertically centered around a possible character to the 
classifier. 

The classifier in the nooo has a tough job. It must be very accurate and immune 
to noise and ink scribbles in the input . Therefore , we decided to use an integrated 
segmentation and recognition approach (Martin & Pittman, 1992)(Platt, et al., 
1992). When the classifier produces a strong response, we know that a character is 
horizontally centered in the retina. 
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Figure 1: The E13B font, as seen by the 11000 chip 
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Figure 2: The overall architecture of the 11000 chip 

We decided to use analog VLSI to minimize the silicon area of the classifier. Be­
cause of the analog implementation, we decided to use a linear template classifier , 
with fixed weights in silicon to minimize area. The weights are encoded as lengths 
of transistors acting as current sources . We trained the classifier using only the 
specification of the font , because we did not have the real E13B data at the time of 
classifier design . The design of the classifier is described in the next section. 

As shown in figure 2, the input to the classifier is an 18 by 24 pixel image taken 
from the retina at a rate of 20 thousand frames per second. The templates in the 
classifier are 18 by 22 pixels. Each template is evaluated in three different vertical 
positions , to allow the retina to send a slightly vertically mis-aligned character . The 
output of the classifier is a set of 42 confidences, one for each of the 14 characters in 
the font in three different vertical positions. These confidences are fed to a winner­
take-all circuit (Lazzaro , et al. , 1989), which finds the confidence and the identity 
of the best character hypothesis. 

2 SPECIFYING THE BEHAVIOR OF THE CLASSIFIER 

Let us consider the training of one template corresponding to one of the characters 
in the font. The template takes a vector of pixels as input . For ease of analog 
implementation, the template is a linear neuron with no bias input: 

(1) 

where 0 is the output of the template, Wi are the weights of the template, and Ii 
are the input pixels of the template. 

We will now mathematically express the training of the templates as three types 
of constraints on the weights of the template . The input vectors used by these 
constraints are the ideal characters taken from the specification of the font . 

The first type of constraint on the template is that the output of the template 
should be above 1 when the character that corresponds to the template is centered 



940 1. C. PLAIT, T. P. ALLEN 
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Figure 3: Examples of images from the bad set for the templates trained to detect 
the zero character. These images are E13B characters that have been horizontally 
and vertically offset from the center of the image. The black border around each of 
the characters shows the boundary of the input field. Notice the variety of horizontal 
and vertical shifts of the different characters. 

in the horizontal field. Call the vector of pixels of this centered character Gi . This 
constraint is stated as: 

(2) 

The second type of constraint on the template is to have an output much lower than 
1 when incorrect or offset characters are applied to the template. We collect these 
incorrect and offset characters into a set of pixel vectors jjj, which we call the "bad 
set." The constraint that the output of the template be lower than a constant c for 
all of the vectors in the bad set is expressed as : 

L wiBf :s c Vj (3) 

Together, constraints (2) and (3) permit use of a simple threshold to distinguish 
between a positive classifier response and a negative one. 

The bad set contains examples of the correct character for the template that are 
horizontally offset by at least two pixels and vertically offset by up to one pixel. In 
addition, examples of all other characters are added to the bad set at every horizon­
tal offset and with vertical offsets of up to one pixel (see figure 3). Vertically offset 
examples are added to make the classifier resistant to characters whose baselines 
are slightly mismatched. 

The third type of constraint on the template requires that the output be invariant 
to the addition of a constant to all of the input pixels. This constraint makes the 
classifier immune to any changes in the background lighting level, k. This constraint 
is equivalent to requiring the sum of the weights to be zero: 

(4) 

Finally, an optimization principle is necessary to choose between all possible weight 
vectors that fulfill constraints (2), (3), and (4). We minimize the perturbation of 
the output of the template given uncorrelated random noise on the input. This 
optimization principle is similar to training on a large data set, instead of simply 
the ideal characters described by the specification. This optimization principle is 
equivalent to minimizing the sum of the square of the weights: 

minLWl (5) 

Expressing the training of the classifier as a combination of constraints and an 
optimization principle allows us to compactly define its behavior. For example, 
the combination of constraints (3) and (4) allows the classifier to be immune to 
situations when two partial characters appear in the image at the same time. The 
confluence of two characters in the image can be described as: 

I?verlap = k + B! + B': 
, 'I (6) 
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where k is a background value and B! and B[ are partial characters from the bad 
set that appears on the left side and right side of the image, respectively. The 
output of the template is then: 

ooverlap = 2: Wi(k + BI + BD = 2: Wjk + 2: wiBI + 2: WiB[ < 2c (7) 

Constraints (3) and (4) thus limit the output of the neuron to less than 2c when 
two partial characters appear in the input. Therefore, we want c to be less than 
0.5. In order to get a 2:1 margin, we choose c = 0.25. 

The classifier is trained only on individual partial characters instead of all possible 
combinations of partial characters. Therefore, we can specify the classifier using 
only 1523 constraints, instead of creating a training set of approximately 128,000 
possible combinations of partial characters. Applying these constraints is therefore 
much faster than back-propagation on the entire data set. 

Equations (2), (3) and (5) describe the optimization problem solved by Vapnik 
(Vapnik, 1982) for constructing a hyperplane that separates two classes. Vapnik 
solves this optimization problem by converting it into a dual space, where the in­
equality constraints become much simpler. However, we add the equality constraint 
(4), which does not allow us to directly use Vapnik's dual space method. To over­
come this limitation, we use the active set method, which can fulfill any extra linear 
equality or inequality constraints. The active set method is described in the next 
section. 

3 THE ACTIVE SET METHOD 

Notice that constraints (2), (3), and (4) are all linear in Wi. Therefore, minimiz­
ing (5) with these constraints is simply quadratic programming with a mixture of 
equality and inequality constraints. This problem can be solved using the active set 
method from optimization theory (Gill, et al., 1981). 

When the quadratic programming problem is solved, some of the inequality con­
straints and all of the equality constraints will be "active." In other words, the ac­
tive constraints affect the solution as equality constraints . The system has "bumped 
into" these constraints. All other constraints will be inactive; they will not affect 
the solution. 

Once we know which constraints are active, we can easily solve the quadratic mini­
mization problem with equality constraints via Lagrange multipliers . The solution 
is a saddle point of the function: 

~ 2: wl + 2: Ak(2: Akj Wj - Ck) (8) 
i k i 

where Ak is the Lagrange multiplier of the kth active constraint, and Akj and Ck 
are the linear and constant coefficients of the kth active constraint. For example, 
if constraint (2) is the kth active constraint, then Ak = G and Ck = 1. The saddle 
point can be found via the set of linear equations: 

Wi - 2: AkAki (9) 
k 

- 2)2: AjiAki)-lCj (10) 
j 

The active set method determines which inequality constraints belong in the active 
set by iteratively solving equation (10) above. At every step, one inequality con­
straint is either made active, or inactive. A constraint can be moved to the active 
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Figure 4: The position along the step where the constraints become violated or the 
Lagrange multipliers become zero can be computed analytically. The algorithm then 
takes the largest possible step without violating constraints or having the Lagrange 
multipliers become zero. 

set if the inequality constraint is violated. A constraint can be moved off the active 
set if its Lagrange multiplier has changed sign 1 . 

Each step of the active set method attempts to adjust the vector of Lagrange mul­
tipliers to the values provided by equation (10). Let us parameterize the step from 
the old to the new Lagrange multipliers via a parameter a: 

X = XO + a8X (11) 

where Xo is the vector of Lagrange multipliers before the step, 8X is the step, and 
when a = 1, the step is completed. Now, the amount of constraint violation and the 
Lagrange multipliers are linear functions of this a. Therefore, we can analytically 
derive the a at which a constraint is violated or a Lagrange multiplier changes sign 
(see figure 4). For currently inactive constraints, the a for constraint violation is: 

Ck + Lj AJ Li AjiAki 
ak = - (12) 

Lj 8Aj Li AjiAki 

For a currently active constraint, the a for a Lagrange multiplier sign change is 
simply: 

(13) 

We choose the constraint that has a smallest positive ak. If the smallest ak is 
greater than 1, then the system has found the solution, and the final weights are 
computed from the Lagrange multipliers at the end of the step. Otherwise, if the kth 
constraint is active, we make it inactive, and vice versa. We then set the Lagrange 
multipliers to be the interpolated values from equation (11) with a = ak. We finally 
re-evaluate equation (10) with the updated active set2 . 

When this optimization algorithm is applied to the E13B font, the templates that 
result are shown in figure 5. When applied to characters that obey the specification, 
the classifier is guaranteed to give a 2:1 margin between the correct peak and any 
false peak caused by the confluence of two partial characters. Each template has 
1523 constraints and takes 7.5 minutes on a SPARe 2 to train. Back-propagation on 
the 128,000 training examples that are equivalent to the constraints would obviously 
require much more computation time. 

IThe sign of the Lagrange multiplier indicates on which side of the inequality constraint 
the constrained minimum lies. 

2 For more details on active set methods, such as how to recognize infeasible constraints, 
consult (Gill, et al., 1981). 
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Figure 5: The weights for the fourteen E13B templates. The light pixels correspond 
to positive weights, while the dark pixels correspond to negative weights. 
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Figure 6: The software second layer 

4 THE SOFTWARE SECOND LAYER 

As a test of the linear classifier, we fabricated the 11000 and tested it with E 13B 
characters on real checks. The system worked when the printing on the check obeyed 
the contrast specification of the font. However, some check printing companies use 
very light or very dark printing. Therefore, there was no single threshold that could 
consistently read the lightly printed checks without hallucinating characters on the 
dark checks. The retina shown in figure 2 does not have automatie gain control 
(AGC). One solution would have been to refabricate the chip using an AGC retina. 
However, we opted for a simpler solution. 

The output of the 11000 chip is a 2-bit confidence level and a character code that 
is sent to an inexpensive microprocessor every 50 microseconds. Because this out­
put bandwidth is low, it is feasible to put a small software second layer into this 
microprocessor to post-process and clean up the output of the 11000. 

The architecture of this software second layer is shown in figure 6. The input to 
the second layer is a linearly time-warped history of the output of the 11000 chip. 
The time warping makes the second layer immune to changes in the velocity of the 
check in the slot. There is one output neuron that is a "pinger." That is, it is 
trained to turn on when the input to the 11000 chip is centered over any character 
(Platt, et al. , 1992) (Martin & Pittman, 1992). There are fourteen other neurons 
that each correspond to a character in the font. These neurons are trained to turn 
on when the appropriate character is centered in the field, and otherwise turn off. 
The classification output is the output of the fourteen neurons only when the pinger 
neuron is on. Thus, the pinger neuron aids in segmentation. 

Considering the entire network spanning both the hardware first layer and software 
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second layer, we have constructed a non-standard TDNN (Waibel, et. al., 1989) 
which recognizes characters. 

We trained the second layer using standard back-propagation, with a training set 
gathered from real checks. Because the nooo output bandwidth is quite low, col­
lecting the data and training the network was not onerous. The second layer was 
trained on a data set of approximately 1000 real checks. 

5 OVERALL PERFORMANCE 

When the hardware first layer in the 11000 is combined with the software second 
layer, the performance of the system on real checks is quite impressive. We gathered 
a test set of 1500 real checks from across the country. This test set contained a 
variety of light and dark checks with unusual backgrounds. We swiped this test set 
through one system. Out of the 1500 test checks, the system only failed to read 2, 
due to staple holes in important locations of certain characters. As such , this test 
yielded a 99.995% character accuracy on real data. 

6 CONCLUSIONS 

For the 11000 analog VLSI OCR chip, we have created an effective hardware linear 
classifier that recognizes the E13B font. The behavior of this classifier was specified 
using constrained optimization. The classifier was designed to have a predictable 
margin of classification, be immune to lighting variations, and be resistant to ran­
dom input noise. The classifier was trained using the active set method, which is an 
enhancement of Vapnik's separating hyperplane algorithm. We used the active set 
method to find the weights of a template in 7.5 minutes of SPARC 2 time, instead of 
training on a data set with 128,000 examples. To make the overall system resistant 
to contrast variation, we separately trained a software second layer on top of this 
first hardware layer, thereby constructing a non-standard TDNN. 

The application discussed in this paper shows the utility of using the active set 
method to very rapidly create either a stand-alone linear classifier or a first layer of 
a multi-layer network. 
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