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Abstract 

We present a neural network-based face detection system. A retinally 
connected neural network examines small windows of an image, and 
decides whether each window contains a face. The system arbitrates 
between multiple networks to improve performance over a single network. 
We use a bootstrap algorithm for training, which adds false detections 
into the training set as training progresses. This eliminates the difficult 
task of manually selecting non-face training examples, which must be 
chosen to span the entire space of non-face images. Comparisons with 
another state-of-the-art face detection system are presented; our system 
has better performance in terms of detection and false-positive rates. 

1 INTRODUCTION 

In this paper, we present a neural network-based algorithm to detect frontal views of faces 
in gray-scale images. The algorithms and training methods are general, and can be applied 
to other views of faces, as well as to similar object and pattern recognition problems. 

Training a neural network for the face detection task is challenging because of the difficulty 
in characterizing prototypical "non-face" images. Unlike in face recognition, where the 
classes to be discriminated are different faces, in face detection, the two classes to be 
discriminated are "images containing faces" and "images not containing faces". It is easy 
to get a representative sample of images which contain faces, but much harder to get a 
representative sample of those which do not. The size of the training set for the second 
class can grow very quickly. 

We avoid the problem of using a huge training set of non-faces by selectively adding images 
to the training set as training progresses [Sung and Poggio, 1994]. This "bootstrapping" 
method reduces the size of the training set needed. Detailed descriptions of this training 
method, along with the network architecture are given in Section 2. In Section 3 the 
performance of the system is examined. We find that the system is able to detect 92.9% of 
faces with an acceptable number of false positives. Section 4 compares this system with a 
similar system. Conclusions and directions for future research are presented in Section 5. 

2 DESCRIPTION OF THE SYSTEM 

Our system consists of two major parts: a set of neural network-based filters, and a system 
to combine the filter outputs. Below, we describe the design and training of the filters, 
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which scan the input image for faces. This is followed by descriptions of algorithms for 
arbitrating among multiple networks and for merging multiple overlapping detections. 

2.1 STAGE ONE: A NEURAL -NETWORK-BASED FILTER 

The first component of our system is a filter that receives as input a small square region of 
the image, and generates an output ranging from 1 to -1, signifying the presence or absence 
of a face, respectively. To detect faces anywhere in the input, the filter must be applied at 
every location in the image. To allow detection of faces larger than the window size, the 
input image is repeatedly reduced in size (by subsampling), and the filter is applied at each 
size. The set of scaled input images is known as an "image pyramid", and is illustrated in 
Figure 1. The filter itself must have some invariance to position and scale. The amount 
of invariance in the filter determines the number of scales and positions at which the filter 
must be applied. 

With these points in mind, we can give the filtering algorithm (see Figure I). It consists 
of two main steps: a preprocessing step, followed by a forward pass through a neural 
network. The preprocessing consists of lighting correction, which equalizes the intensity 
values across the window, followed by histogram equalization, which expands the range of 
intensities in the window [Sung and Poggio, 19941 The preprocessed window is used as 
the input to the neural network. The network has retinal connections to its input layer; the 
receptive fields of each hidden unit are shown in the figure. Although the figure shows a 
single hidden unit for each subregion of the input, these units can be replicated. Similar 
architectures are commonly used in speech and character recognition tasks [Waibel et al., 
1989, Le Cun et al., 19891 

Input image pyramid Extracted window Correct lighting 

/ 

Preprocessing Neural network 

Figure 1: The basic algorithm used for face detection. 

Examples of output from a single filter are shown in Figure 2. In the figure, each box 
represents the position and size of a window to which the neural network gave a positive 
response. The network has some invariance to position and scale, which results in mUltiple 
boxes around some faces. Note that there are some false detections; we present methods to 
eliminate them in Section 2.2. We next describe the training of the network which generated 
this output. 

2.1.1 Training Stage One 

To train a neural network to serve as an accurate filter, a large number of face and non-face 
images are needed. Nearly 1050 face examples were gathered from face databases at CMU 
and Harvard. The images contained faces of various sizes, orientations, positions, and 
intensities. The eyes and upper lip of each face were located manually, and these points 
were used to normalize each face to the same scale, orientation, and position. A 20-by-20 
pixel region containing the face is extracted and preprocessed (by apply lighting correction 
and histogram equalization). In the training set, 15 faces were created from each original 
image, by slightly rotating (up to 10°), scaling (90%-110%), translating (up to half a pixel), 
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Figure 2: Images with all 
the above threshold detec
tions indicated by boxes. 

Figure 3: Example face im
ages, randomly mirrored, ro
tated, translated. and scaled 
by small amounts. 

and mirroring each face. A few example images are shown in Figure 3. 
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It is difficult to collect a representative set of non-faces. Instead of collecting the images 
before training is started, the images are collected during training, as follows [Sung and 
Poggio, 1994]: 

I. Create 1000 non-face images using random pixel intensities. 

2. Train a neural network to produce an output of 1 for the face examples, and -I for 
the non-face examples. 

3. Run the system on an image of scenery which contains no faces. Collect subimages 
in which the network incorrectly identifies a face (an output activation> 0). 

4. Select up to 250 of these subimages at random, and add them into the training set. 
Go to step 2. 

Some examples of non-faces that are collected during training are shown in Figure 4. We 
used 120 images for collecting negative examples in this bootstrapping manner. A typical 
training run selects approximately 8000 non-face images from the 146,212,178 subimages 
that are available at all locations and scales in the scenery images. 

Figure 4: Some non-face examples which are collected during training. 

2.2 STAGE TWO: ARBITRATION AND MERGING OVERLAPPING 
DETECTIONS 

The examples in Figure 2 showed that just one network cannot eliminate all false detections. 
To reduce the number of false positives, we apply two networks, and use arbitration to 
produce the final decision. Each network is trained in a similar manner, with random 
initial weights, random initial non-face images, and random permutations of the order of 
presentation of the scenery images. The detection and false positive rates of the individual 
networks are quite close. However, because of different training conditions and because 
of self-selection of negative training examples, the networks will have different biases and 
will make different errors. 

For the work presented here, we used very simple arbitration strategies. Each detection 
by a filter at a particular position and scale is recorded in an image pyramid. One way to 
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combine two such pyramids is by ANDing. This strategy signals a detection only if both 
networks detect a face at precisely the same scale and position. This ensures that, if a 
particular false detection is made by only one network, the combined output will not have 
that error. The disadvantage is that if an actual face is detected by only one network, it will 
be lost in the combination. Similar heuristics, such as ORing the outputs, were also tried. 

Further heuristics (applied either before or after the arbitration step) can be used to improve 
the performance of the system. Note that in Figure 2, most faces are detected at multiple 
nearby positions or scales, while false detections often occur at single locations. At each 
location in an image pyramid representing detections, the number of detections within a 
specified neighborhood of that location can be counted. If the number is above a threshold, 
then that location is classified as a face. These detections are then collapsed down to a 
single point, located at their centroid. when this is done before arbitration, the centroid 
locations rather than the actual outputs from the networks are ANDed together. 

If we further assume that a position is correctly identified as a face, then all other detections 
which overlap it are likely to be errors, and can therefore be eliminated. There are relatively 
few cases in which this heuristic fails; however, one such case is illustrated in the left two 
faces in Figure 2B, in which one face partially occludes another. Together, the steps of 
combining multiple detections and eliminating overlapping detections will be referred to as 
merging detections. In the next section, we show that by merging detections and arbitrating 
among multiple networks, we can reduce the false detection rate significantly. 

3 EMPIRICAL RESULTS 

A large number of experiments were performed to evaluate the system. Because of space . 
restrictions only a few results are reported here; further results are presented in [Rowley et 
al., 1995]. We first show an analysis of which features the neural network is using to detect 
faces, and then present the error rates of the system over two large test sets. 

3.1 SENSITIVITY ANALYSIS 

In order to determine which part of the input image the network uses to decide whether 
the input is a face, we performed a sensitivity analysis using the method of [Baluja and 
Pomerleau, 1995]. We collected a test set of face images (based on the training database, but 
with different randomized scales, translations, and rotations than were used for training), 
and used a set of negative examples collected during the training of an earlier version of 
the system. Each of the 20-by-20 pixel input images was divided into 100 two-by-two 
pixel subimages. For each subimage in turn, we went through the test set, replacing that 
subimage with random noise, and tested the neural network. The sum of squared errors 
made by the network is an indication of how important that portion of the image is for the 
detection task. Plots of the error rates for two networks we developed are shown in Figure 5. 

FigureS: Sum of squared errors (z
axis) on a small test resulting from 
adding noise to various portions of 
the input image (horizontal plane), 
for two networks. Network 1 uses 
two sets of the hidden units illus
trated in Figure 1, while network 2 
uses three sets. 

The networks rely most heavily on the eyes, then on the nose, and then on the mouth 
(Figure 5). Anecdotally, we have seen this behavior on several real test images: the 
network's accuracy decreases more when an eye is occluded than when the mouth is 
occluded. Further, when both eyes of a face are occluded, it is rarely detected. 
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3.2 TESTING 

The system was tested on two large sets of images. Test Set A was collected at CMU, and 
consists of 42 scanned photographs, newspaper pictures, images collected from the World 
Wide Web, and digitized television pictures. Test set B consists of 23 images provided 
by Sung and Poggio; it was used in [Sung and Poggio, 1994] to measure the accuracy 
of their system. These test sets require the system to analyze 22,053,124 and 9,678,084 
windows, respectively. Table 1 shows the performance for the two networks working alone, 
the effect of overlap elimination and collapsing multiple detections, and the results of using 
ANDing and ~Ring for arbitration. Each system has a better false positive rate (but a worse 
detection rate) on Test Set A than on Test Set B, because of differences in the types of 
images in the two sets. Note that for systems using arbitration, the ratio of false detections 
to windows examined is extremely low, ranging from 1 in 146,638 to 1 in 5,513,281, 
depending on the type of arbitration used. Figure 6 shows some example output images 
from the system, produced by merging the detections from networks 1 and 2, and ANDing 
the results. Using another neural network to arbitrate among the two networks gives about 
the same performance as the simpler schemes presented above [Rowley et ai., 1995]. 

Table 1: Detection and Error Rates 
Test Set A Test Set B 

# miss 1 Detect rate # miss 1 Detect rate 
Type System False detects 1 Rate False detects 1 Rate 

0) Ideal System 0/169 100.0% 01155 100.0% 
0 0/22053124 0 0/9678084 

Single 1) Network 1 (52 hidden 17 89.9% 11 92.9% 
network, units, 2905 connections) 507 1143497 353 1127417 
no 2) Network 2 (7~ hidden 20 ~~.2% 10 93.5% 
heuristics units, 4357 connections) 385 1157281 347 1127891 
Single 3) Network 1 4- merge 24 85.8% 12 92.3% 
network, detections 222 1199338 126 1176810 
with 4) Network 2 4- merge 27 84.0% 13 91.6% 
heuristics detections 179 11123202 123 1178684 
Arbitrating 5) Networks 1 and 2 4- AND 52 69.2% 34 78.1% 
among 4- merge detections 4 115513281 3 113226028 
two 6) Networks 1 and 2 4- 36 78.7% 20 ~7.1% 

networks merge detections 4- AND 15 111470208 15 11645206 
7) Networks 1 and 2 4- 26 84.6% 11 92.9% 
merge 4- OR 4- merge 90 11245035 64 11151220 

4 COMPARISON TO OTHER SYSTEMS 

[Sung and Poggio, 1994] reports a face-detection system based on clustering techniques. 
Their system, like ours, passes a small window over all portions of the image, and determines 
whether a face exists in each window. Their system uses a supervised clustering method 
with six "face" and six "non-face" clusters. Two distance metrics measure the distance of 
an input image to the prototype clusters. The first metric measures the "partial" distance 
between the test pattern and the cluster's 75 most significant eigenvectors. The second 
distance metric is the Euclidean distance between the test pattern and its projection in 
the 75 dimensional subspace. These distance measures have close ties with Principal 
Components Analysis (PeA), as described in [Sung and Poggio, 1994]. The last step in 
their system is to use either a perceptron or a neural network with a hidden layer, trained 
to classify points using the two distances to each of the clusters (a total of 24 inputs). 
Their system is trained with 4000 positive examples, and nearly 47500 negative examples 
collected in the "bootstrap" manner. In comparison, our system uses approximately 16000 
positive examples and 8000 negative examples. 

Table 2 shows the accuracy of their system on Test Set B, along with the results of our 



880 H. A. ROWLEY, S. BALUJA, T. KANADE 

Figure 6: Output produced by System 6 in Table 1. For each image, three numbers are shown: 
the number of faces in the image, the number of faces detected correctly, and the number of false 
detections. Some notes on specific images: Although the system was not trained on hand-drawn 
faces, it detects them in K and R. One false detect is present in both D and R. Faces are missed in D 
(removed because a false detect overlapped it), B (one due to occlusion, and one due to large angle), 
and in N (babies with fingers in their mouths are not well represented in training data). Images B, 
D, F, K, L, and M were provided by Sung and Poggio at MIT. Images A, G, 0, and P were scanned 
from photographs, image R was obtained with a CCD camera, images J and N were scanned from 
newspapers, images H, I, and Q were scanned from printed photographs, and image C was obtained 
off of the World Wide Web. Images P and B correspond to Figures 2A and 2B. 
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system using a variety of arbitration heuristics. In [Sung and Poggio, 1994], only 149 faces 
were labelled in the test set, while we labelled 155 (some are difficult for either system to 
detect). The number of missed faces is therefore six more than the values listed in their 
paper. Also note that [Sung and Poggio, 1994] check a slightly smaller number of windows 
over the entire test set; this is taken into account when computing the false detection rates. 
The table shows that we can achieve higher detection rates with fewer false detections. 

Table 2: Comparison of [Sung and Poggio, 1994] and Our System on Test Set B 

System 
II Missed 

faces 
Detect I False 

rate detects Rate 
5) Networks 1 and 2 ~ AND ~ merge 34 78.l% 3 113226028 
6) Networks 1 and 2 ~ merge ~ AND 20 87.l% 15 11645206 
7) Networks 1 and 2 ~ merge ~ OR ~ merge 11 92.9% 64 11151220 
[Sung and Poggio, 1994] (Multi-layer network) 36 76.8% 5 111929655 
[Sung and Poggio, 1994] (Perceptron) 28 81.9% 13 11742175 

5 CONCLUSIONS AND FUTURE RESEARCH 

Our algorithm can detect up to 92.9% of faces in a set of test images with an acceptable 
number of false positives. This is a higher detection rate than [Sung and Poggio, 1994]. The 
system can be made more conservative by varying the arbitration heuristics or thresholds. 

Currently, the system does not use temporal coherence to focus attention on particular 
portions of the image. In motion sequences, the location of a face in one frame is a strong 
predictor of the location of a face in next frame. Standard tracking methods can be applied to 
focus the detector's attention. The system's accuracy might be improved with more positive 
examples for training, by using separate networks to recognize different head orientations, 
or by applying more sophisticated image preprocessing and normalization techniques. 

Acknowledgements 

The authors thank Kah-Kay Sung and Dr. Tomaso Poggio (at MIT), Dr. Woodward Yang (at Harvard), 
and Michael Smith (at CMU) for providing training and testing images. We also thank Eugene Fink, 
Xue-Mei Wang, and Hao-Chi Wong for comments on drafts of this paper. 

This work was partially supported by a grant from Siemens Corporate Research, Inc., and by the 
Department of the Army, Army Research Office under grant number DAAH04-94-G-0006. Shu meet 
Baluja was supported by a National Science Foundation Graduate Fellowship. The views and 
conclusions in this document are those of the authors, and should not be interpreted as necessarily 
representing official policies or endorsements, either expressed or implied, of the sponsoring agencies. 

References 

[Baluja and Pomerleau, 1995] Shumeet Baluja and Dean Pomerleau. Encouraging distributed input 
reliance in spatially constrained artificial neural networks: Applications to visual scene analysis 
and control. Submitted, 1995. 

[Le Cun et al., 1989] Y. Le Cun, B. Boser, 1. S. Denker, D. Henderson, R. E. Howard, W. Hub
bard, and L. D. Jackel. Backpropogation applied to handwritten zip code recognition. Neural 
Computation, 1:541-551, 1989. 

[Rowley et al., 1995] Henry A. Rowley, Shumeet Baluja, and Takeo Kanade. Human face detection 
in visual scenes. CMU-CS-95-158R, Carnegie Mellon University, November 1995. Also available 
at http://www.cs.cmu.edul11ar/faces.html. 

[Sung and Poggio, 1994] Kah-Kay Sung and Tomaso Poggio. Example-based learning for view
based human face detection. A.I. Memo 1521, CBCL Paper 112, MIT, December 1994. 

[Waibel et al., 1989] Alex Waibel, Toshiyuki Hanazawa, Geoffrey Hinton, Kiyohiro Shikano, and 
Kevin J. Lang. Phoneme recognition using time-delay neural networks. Readings in Speech 
Recognition, pages 393-404, 1989. 


