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Abstract 

Using a statistical mechanical formalism we calculate the evidence, 
generalisation error and consistency measure for a linear percep­
tron trained and tested on a set of examples generated by a non 
linear teacher. The teacher is said to be unrealisable because the 
student can never model it without error. Our model allows us to 
interpolate between the known case of a linear teacher, and an un­
realisable, nonlinear teacher. A comparison of the hyperparameters 
which maximise the evidence with those that optimise the perfor­
mance measures reveals that, in the non-linear case, the evidence 
procedure is a misleading guide to optimising performance. Finally, 
we explore the extent to which the evidence procedure is unreliable 
and find that, despite being sub-optimal, in some circumstances it 
might be a useful method for fixing the hyperparameters. 

1 INTRODUCTION 

The analysis of supervised learning or learning from examples is a major field of 
research within neural networks. In general, we have a probabilistic1 teacher, which 
maps an N dimensional input vector x to output Yt(x) according to some distri­
bution P(Yt I x). We are supplied with a data set v= ({Yt(xlJ ), xlJ} : J.' = l..p) 
generated from P(Yt I x) by independently sampling the input distribution, P(x), 
p times. One attempts to optimise a model mapping (a student), parameterised by 

lThis accommodates teachers with deterministic output corrupted by noise. 
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some vector w, with respect to the underlying teacher. The training error Ew (V) 
is some measure of the difference between the student and the teacher outputs over 
the set V. Simply minimising the training error leads to the problem of over-fitting. 
In order to make successful predictions out-with the set V it is essential to have 
some prior preference for particular rules. Occams razor is an expression of our 
preference for the simplest rules which account for the data. Clearly Ew(V) is an 
unsatisfactory performance measure since it is limited to the training examples. 
Very often we are interested in the students ability to model a random example 
drawn from P(Yt I x)P(x), but not necessarily in the training set, one measure 
of this performance is the generalisation error. It is also desirable to predict, or 
estimate, the level of this error. The teacher is said to be an unrealisable rule, for 
the student in question, if the minimum generalisation error is non-zero. 

One can consider the Supervised Learning Paradigm within the context of Bayesian 
Inference. In particular MacKay [MacKay 92(a)] advocates the evidence procedure 
as a 'principled' method which, in some situations, does seem to improve perfor­
mance [Thodberg 93]. However, in others, as MacKay points out the evidence 
procedure can be misleading [MacKay 92(b )]. 

In this paper we do not seek to comment on the validity of of the evidence procedure 
as an approximation to Hierarchical Bayes (see for example [Wolpert and Strauss 
94]). Rather, we ask which performance measures do we seek to optimise and under 
what conditions will the evidence procedure optimise them? Theoretical results 
have been obtained for a linear percept ron trained on data produced by a linear 
perceptron [Bruce and Saad 94]. They suggest that the evidence procedure is a 
useful guide to optimising the learning algorithm's performance. 

In what follows we examine the evidence procedure for the case of a linear perceptron 
learning a non linear teacher. In the next section we review the Bayesian scheme 
and define the evidence and the relevant performance measures. In section 3 we 
introduce our student and teacher and discuss the calculation. Finally, in section 4 
we examine the extent to which the evidence procedure optimises performance. 

2 BAYESIAN FORMALISM 

2.1 THE EVIDENCE 

If we take Ew(V) to be the usual sum squared error and assume that our data is 
corrupted by Gaussian noise with variance 1/2/3 then the probability, or likelihood, 
ofthe data(V) being produced given the model wand /3 is P(D 1/3, w) ex: e-~Ew(1)). 
In order to incorporate Occams Razor we also assume a prior distribution on the 
teacher rules, that is, we believe a priori in some rules more strongly than others. 
Specifically we believe that pew I ,) ex: e-"'(C(w). MUltiplying the likelihood by 
the prior we obtain the post training or student distribution2 P( w I V", /3) ex: 
e-~Ew(1))-''YC(w). It is clear that the most probable model w· is given by minimising 
the composite cost function /3Ew(V)+,C(w) with respect to the weights (w). This 
formalises the trade off between fitting the data and minimising student complexity. 
In this sense the Bayesian viewpoint coincides with the usual backprop standpoint. 

2Integrating this over f3 and 'Y gives us the posterior P(w I 1». 
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In fact, it should be noted that stochastic minimisation can also give rise to the 
same post training distribution [Seung et aI92). The parameters (3 and, are known 
as the hyperparameters. Here we consider C(w) = wtw in which case, is termed 
the weight decay. 

The evidence is the normalisation constant in the above expression for the post 
training distribution. 

P('D I 'Y,(3) = J n dWjP('D I (3, w)P(w I,) 
J 

That is, the probability of the data set ('D) given the hyperparameters. The ev­
idence procedure fixes the hyperparameters to the values that maximise this 
probability. 

2.2 THE PERFORMANCE MEASURES 

Many performance measures have been introduced in the literature (See e.g., [Krogh 
and Hertz 92) and [Seung et aI92)) . Here, we consider the squared difference between 
the average (over the post training distribution) of the student output (y.(x)}w 
and that of the teacher, Yt(x) , averaged over all possible test questions and teacher 
outputs, P(Yt, x) and finally over all possible sets of data, 'D. 

fg = ((Yt(x) - (Y. (x»)w ?}P(X,Yf).'l) 

This is equivalent to the generalisation error given by Krogh and Hertz. 

Another factor we can consider is the variance of the output over the student dis­
tribution ({y.(x) - (y.(x)}wP}w,P(x)' This gives us a measure of the confidence 
we should have in our post training distribution and could possibly be calculated if 
we could estimate the input distribution P(x). Here we extend Bruce and Saad's 
definition [Bruce and Saad 94] of the consistency measure Dc to include unrealisable 
rules by adding the asymptotic error fr: = IiIIlp_oo fg, 

Dc = ({y.(x) - (y.(x)}w}2}w,p(x),'P - fg + fr;' 
We regard Dc = 0 as optimal since then the variance over our student distribution 
is an accurate prediction of the decaying part of the generalisation error. 

We can consider both these performance measures as objective functions measuring 
the students ability to mimic the underlying teacher. Clearly, they can only be 
calculated in theory and perhaps, estimated in practice. In contrast, the evidence 
is only a function of our assumptions and the data and the evidence procedure is, 
therefore, a practical method of setting the hyperparameters. 

3 THE MODEL 

In our model the student is simply a linear perceptron. The output for an input 
vector xl' is given by Y: = w .xl' / v'N. The examples, against which the student 
is trained and tested, are produced by sampling the input distribution, P(x) and 
then generating outputs from the distribution, 

P(Yt I x) = t P(y~ I x, O)P(x I O)PA 
0=1 2:0=1 P(O)P(x I 0) 
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Figure 1: A 2-teacher in 1D : The average output (Yt}P(yl%') (i) for Dw = 0 , (ii) for 
Dw > 0 (0'%'1 = 0'%',) and (iii) with Dw > 0 (0'%'1 ¥- 0'%,,) . 

where P(Yt I x, n) <X exp([Yt - wn.xF /20'2), P(x I n) is N(an,O',;o) 3 and PA 
is chosen such that I:~=l PA=1. Thus, each component in the sum is a linear 
perceptron, whose output is corrupted by Gaussian noise of variance 0'2, and we 
refer to this teacher as an n-teacher. 

In what follows , for simplicity, we consider a two teacher (n=2) with an = O. The 
parameter Dw = Jv Iw1-w212 and the input distribution determine the form of the 
teacher. This is shown in Figure 1. which displays the average output of a 2-teacher 
with one dimensional input vector. For 0' Xl =0' X2' Dw controls the variance about 
a linear mean output, and for fixed O'XI ¥- 0'%'2' Dw controls the nonlinearity of the 
teacher. In the latter case, in the large N limit the variance of P(Yt I x) is zero. 

We can now explicitly write the evidence and perform the integration over the 
student parameters (over weights) . Taking the logarithm of the resulting expression 
leads to In P(1) I >" ,13) = - N 1(1) where the 1 is analogous to a free energy in 
statistical physics. 

1 >.. a 13 1 1 1 
- 1(1) = -In - + -In - + -lndetg + -ln211' + -P'g'kPk - e 2 11' 2 11' 2N 2 N J J 

and, 

n 

gjk1 = L Afk + >"Ojk 
n=1 

p 
a=-

N 

Here we are using the convention that summations are implied where repeated 
indices occur. 

3Where N(x, 0'2) denotes a normal distribution with mean x and variance 0'2 . 
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The performance measures for this model are 

2 

{g = (~'x PA{w?w? - 2w?(Wj}w + (Wj}!}}'V 

u 2 

Oc = Nt (trg}'V - {g + {r; 
where, (Wj}w = Pl:gl:j ' and u;eff = PAu;o 
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In order to pursue the calculation we consider the average of I(V) over all possible 
data sets just as, earlier, we defined our performance measures as averages over all 
data sets. This is some what artificial as we would normally be able to calculate 
I(V) and be interested in the generalisation error for our learning algorithm given a 
particular instance of the data. However, here we consider the thermodynamic limit 
(i.e., N,p - 00 s.t. 0 = piN = const.) in which, due to our sampling assumptions, 
the behaviours for typical examples of V coincide with that of the average. Details 
of the calculation will be published else where [Marion and Saad 95]. 

4 RESULTS AND DISCUSSION 

We can now examine the evidence and the performance measures for our unlearnable 
problem. We note that in two limits we recover the learnable, linear teacher, case. 
Specifically if the probability of picking one of the component teachers is zero or if 
both component teacher vectors are aligned. In what follows we set Pi = P~ and 
normalise the components of the teacher such that Iwol = l. 

Firstly let us consider the performance measures. The asymptotic value of both {g 

and loci for large 0 is PiP~u;lu;:lDwlu;eff' This is the minimum generalisation 
error attainable and reflects the effective noise level due to the mismatch between 
student and teacher. 

We note here that the generalisation error is a function of ~ rather than f3 and 'Y 
independently. Figure 2a shows the generalisation error plotted against o. The 
addition of unlearn ability (Dw > 0) has a similar effect to the addition of noise on 
the examples. The appearance of the hump can be easily understood; If there is no 
noise or ~ is large enough then there is a steady reduction in {g. However, if this is 
not so then for small 0 the student learns this effective noise and the generalisation 
error increases with o . As the student gets more examples the effects of the noise 
begin to average out and the student starts to learn the rule. The point at which the 
generalisation error starts to decrease is influenced by the effective noise level and 
the prior constraint. Figure 2b shows the absolute value of the consistency measure 
v's 0 for non-optimal f3. Again we see that unlearn ability acts as an effective noise. 
For a few examples with ~ small or with large effective noise the student distribution 
is narrowed until the Oc is zero. However, the generalisation error is still increasing 
(as described above) and loci increases to a local maximum, it then asymptotically 
tends to { ,q. If there is no noise or ~ is large enough then loci steadily reduces as 
the number of examples increases. 

We now examine the evidence procedure. Firstly we define f3ev ( 'Y) and 'Yev (f3) to 
be the hyperparameters which maximise the evidence. The evidence procedure 
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Figure 2: The performance measures: Graph a shows (g for finite lambda. a(i) and 
a(ii) are the learnable case with noise in the latter case. a(iii) shows that the effect 
of adding unlearn ability is qualitatively the same as adding noise. Graph b. shows 
the modulus of the consistency error v's a. Curves b(i) and b(ii) are the learnable 
case without and with noise respectively. Curve b(iii) is an unlearnable case with 
the same noise level. 

picks the point in hyperparameter space where these curves coincide. We denote 
the asymptotic values of 13ev(-y) and 'Yev(13) in the limit of large a by 1300 and 'Yoo 
respectively. 

In the linear case (Dw = 0) the evidence procedure assignments of the hyperpa­
rameters (for finite a) coincide with 1300 and 'Yoo and also optimise (g and 6c in 
agreement with [Bruce and Saad 94] . This is shown in Figure 3a where we plot 
the 13 which optimises the evidence (13ev) , the consistency measure (136c) and the 
generalisation error (13!g) versus 'Y. The point at which the three curves coincide is 
the point in the 13-'Y plane identified by the evidence procedure. However, we note 
here that, if one of the hyperparameters is poorly determined then maximising the 
evidence with respect to the other is a misleading guide to optimising performance 
even in the linear case. 

The results for an unrealisable rule in the linear regime (Dw > 0, lrXI = lrX:l) are 
similar to the learnable case but with an increased noise due to the unlearn ability. 
The evidence procedure still optimises performance. 

In the non-linear regime (Dw > 0 , lrXI ¥- lrX:l) the evidence procedure fails to 
minimise either performance measure. This is shown in Figure 3b where the evi­
dence procedure point does not lie on 13!g ('Y) or 136c (-y). Indeed, its hyperparameter 
assignments do not coincide with 1300 and 'Yoo but are a dependent. 

How badly does the evidence procedure fail? We define the percentage degradation 
in generalisation performance as I'\, = 100 * «( 9 (Aev) - (;Pt) / (;pt. Where Aev is the 
evidence procedure assignment and (;pt is the optimal generalisation error with 
respect to A. This is plotted in Figure 4a. We also define 
1'\,6 = 100* 16c(Aev)1 /(g(Aev ). This measures the error in using the variance of the 
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Figure 3: The evidence procedure:Optimal f3 v's /. In both graphs for (i) the 
evidence(f3ev), (ii) the generalisation error (f3f g ) and (iii) the consistency measure 
(f36J . The point which the evidence procedure picks in the linear case is that where 
all three curves coincide, whereas in the non linear case it coincides only with f3ev . 

post training distribution to estimate the generalisation error as a percentage of 
the generalisation error itself. Examples of this quantity are plotted in Figure 4b. 
There are three important points to note concerning I'\, and 1'\,6 . Firstly, the larger 
the deviation from a linear rule the greater is the error . Secondly, that it is the 
magnitude of the effective noise due to unlearnability relative to the real noise which 
determines this error. In other words , if the real noise is large enough to swamp the 
non-linearity of the rule then the evidence procedure will not be very misleading. 
Finally, the magnitude of the error for relatively large deviations from linearity is 
only a few percent and thus the evidence procedure might well be a reasonable, if 
not optimal, method for setting the hyperparameters. However, clearly it would be 
preferable to improve our student space to enable it to model the teacher . 

5 CONCLUSION 

We have examined the generalisation error, the consistency measure and the evi­
dence procedure within a model which allows us to interpolate between a learnable 
and an unlearnable scenario. We have seen that the unlearnability acts like an ef­
fective noise on the examples. Furthermore, we have seen that for a linear student 
the evidence procedure breaks down, in that it fails to optimise performance, when 
the teacher output is non-linear. However, even for relatively large deviations of 
the teacher from linearity the evidence procedure is close to optimal. 

Bayesian methods, such as the evidence procedure, are based on the assumption 
that the student or hypothesis space contains the teacher generating the data. In 
our case, in the non-linear regime, this is clearly not true and so it is perhaps 
not surprising that the evidence procedure is sub-optimal. Whether or not such a 
breakdown of the evidence procedure is a generic feature of a mismatch between 
the hypothesis space and the teacher is a matter for further study. 
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Figure 4: The relative degradation in performance compared to the optimal when 
using the evidence procedure to set the hyperparameters. Graph (a) shows the 
percentage degradation in generalisation performance K, • a(i) has Dw = 1 with the 
real noise level u = 1. a(ii) has this noise level reduced to u = 0.1 and a(iii) has 
increased non-linearity, Dw = 3, and u = 1. Graph (b) shows the error made in 
predicting the generalisation error from the variance of the post training distribution 
as a percentage of the generalisation error itself, "'6 . b(i) and b(ii) have the same 
parameter values as a(i) and a(ii), whilst b(iii) has Dw = 3 and u = 0.1 
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