
Combining Estimators Using
Non-Constant Weighting Functions

Volker Tresp*and Michiaki Taniguchi
Siemens AG, Central Research

Otto-Hahn-Ring 6
81730 Miinchen, Germany

Abstract

This paper discusses the linearly weighted combination of estima­
tors in which the weighting functions are dependent on the input .
We show that the weighting functions can be derived either by
evaluating the input dependent variance of each estimator or by
estimating how likely it is that a given estimator has seen data in
the region of the input space close to the input pattern. The lat­
ter solution is closely related to the mixture of experts approach
and we show how learning rules for the mixture of experts can be
derived from the theory about learning with missing features. The
presented approaches are modular since the weighting functions
can easily be modified (no retraining) if more estimators are ad­
ded. Furthermore, it is easy to incorporate estimators which were
not derived from data such as expert systems or algorithms.

1 Introduction

Instead of modeling the global dependency between input x E ~D and output y E ~
using a single estimator, it is often very useful to decompose a complex mapping

-'\.t the time of the research for this paper, a visiting researcher at the Center for
Biological and Computational Learning, MIT. Volker.Tresp@zfe.siemens.de

420 Volker Tresp, Michiaki Taniguchi

into simpler mappings in the form l

(1)

M

n(x) = L hi(X)
i=l

The weighting functions hi(X) act as soft switches for the modules N Ni(X). In the
mixture of experts (Jacobs et al., 1991) the decomposition is learned in an unsuper­
vised manner driven by the training data and the main goal is a system which learns
quickly. In other cases, the individual modules are trained individually and then
combined using Equation 1. We can distinguish two motivations: first, in the work
on averaging estimators (Perrone, 1993, Meir , 1994, Breiman, 1992) the modules
are trained using identical data and the weighting functions are constant and, in
the simplest case, all equal to one. The goal is to achieve improved estimates by
averaging the errors of the individual modules. Second, a decomposition as descri­
bed in Equation 1 might represent some "natural" decomposition of the problem
leading to more efficient representation and training (Hampshire and Waibel, 1989).
A good example is a decomposition into analysis and action. hi(x) might be the
probability of disease i given the symptoms x, the latter consisting of a few dozen
variables. The amount of medication the patient should take given disease i on the
other hand - represented by the output of module N Ni (x) - might only depend
on a few inputs such as weight, gender and age.2 Similarly, we might consider hie x)
as the IF-part of the rule, evaluating the weight of the rule given x, and as N Ni(X)
the conclusion or action which should be taken under rule i (compare Tresp, Hol­
latz and Ahmad, 1993). Equation 1 might also be the basis for biological models
considering for example the role of neural modulators in the brain. Nowlan and
Sejnowsky (1994) recently presented a biologically motivated filter selection model
for visual motion in which modules provide estimates of the direction and amount
of motion and weighting functions select the most reliable module.

In this paper we describe novel ways of designing the weighting functions. Intui­
tively, the weighting functions should represent the competence or the certainty of
a module, given the available information x. One possible measure is related to the
number of training data that a module has seen in the neighborhood of x. There­
fore, P(xli), which is an estimate of the distribution of the input data which were
used to train module i is an obvious candidate as weighting function. Alternatively,
the certainty a module assigns to its own prediction, represented by the inverse of
the variance 1/ var(N Ni (x» is a plausible candidate for a weighting function. Both
approaches seem to be the flip-sides of the same coin, and indeed, we can show that
both approaches are extremes of a unified approach.

IThe hat stands for an estimates value.
2Note, that we include the case that the weighting functions and the modules might

explicitly only depend on different subsets of x.

Combining Estimators Using Non-Constant Weighting Functions

(b)
0.5r-r-----T"I

-1

-1 o

j
:1
~

I '
I,:'
I:
t '

l ,

(d)
0.5.----------"

o

-1

-1 o 1

421

(e)
1

0.8
I,

0.6 I \

/ / I

0 .4 \
\

0.2
\
I
\

(f)

-1

-1 o 1

Figure 1: (a): Two data sets (1:*, 2:0) and the underlying function (continuous).
(b) The approximations of the two neural networks trained on the data sets (conti­
nuous: 1, dashed: 2). Note, that the approximation of a network is only reliable in
the regions of the input space in which it has "seen" data. (c) The weighting func­
tions for variance-based weighting. (d) The approximation using variance-based
weighting (continuous). The approximation is excellent, except to the very right.
(e) The weighting functions for density-based weighting (Gaussian mixtures appro­
ximation). (f) The approximation using density-based weighting (continuous). In
particular to the right, the extrapolation is better than in (d).

2 Variance-based Weighting

Here, we assume that the different modules N Ni(x) were trained with different
data sets {(xLY~)}:~l but that they model identical input-output relationships
(see Figure 1 a,b). To give a concrete example, this would correspond to the case
that we trained two handwritten digit classifiers using different data sets and we
want to use both for classifying new data.

If the errors of the individual modules are uncorrelated and unbiased,3 the combined
estimator is also unbiased and has the smallest variance if we select the weighting
functions inversely proportional the the variance of the modules

1
hi(X) = var(NNi(x)) (2)

This can be shown using var(2:::'l gi(x)N Ni(X)) = 2:::'1 gl(x)var(N Ni(X)) and
using Lagrange mUltiplier to enforce the constraint that 2:i gi(X) = 1. Intuitively,

3The errors are un correlated since the modules were trained with different data; corre­
lation and bias are discussed in Section 8.1.

422 Volker Tresp, Michiaki Taniguchi

Equation 2 says that a module which is uncertain about its own prediction should
also obtain a smaller weight. We estimate the variance from the training data as

(NN.(» '" 8N Ni(xl H-:- 18N Ni(X)
var * x "" 8w * 8w'

Hi is the Hessian, which can be approximated as «(12 is the output-noise variance,
Tibshirani, 1994)

3 Density-based Weighting

In particular if the different modules were trained with data sets from different
regions of the input space, it might be a reasonable assumption that the different
modules represent different input-output relationships. In terms of our example,
this corresponds to the problem, that we have two handwritten digit classifiers, one
trained with American data and one with European data. If the classifiers are used
in an international setting, confusions are possible, since, for example, an American
seven might be confused with a European one. Formally, we introduce an additional
variable which is equal to zero if the writer is American and is equal to one if the
writer is European. During recall, we don't know the state of that variable and
we are formally faced with the problem of estimation with missing inputs. From
previous work (Ahmad and Tresp, 1993) we know that we have to integrate over
the unknown input weighted by the conditional probability of the unknown input
given the known variables. In this case, this translates into Equation 1, where the
weighting function is

In our example, P(ilx) would estimate the probability that the writer is American
or European given the data.

Depending on the problem P(ilx) might be estimated in different ways. If x repres­
ents continuous variables, we use a mixture of Gaussians model

(3)

where G(x; cij, Eij) is our notation for a normal density centered at cij and with
covariance Eij.

Note that we have obtained a mixture of experts network with P(ilx) as gating net­
work. A novel feature of our approach is that we maintain an estimate of the input
data distribution (Equation 3), which is not modeled in the original mixture of ex­
perts network. This is advantageous if we have training data which are not assigned

Combining Estimators Using Non-Constant Weighting Functions 423

to a module (in the mixture of experts, no data are assigned) which corresponds
to training with missing inputs (the missing input is the missing assignment), for
which the solution is known (Tresp et ai., 1994). If we use Gaussian mixtures to
approximate P(xli), we can use generalized EM learning rules for adaptation. The
adaptation of the parameters in the "gating network" which models P(xli) is the­
refore somewhat simpler than in the original mixture of experts learning rules (see
Section 8.2).

4 Unified Approach

In reality, the modules will often represent different mappings, but these mappings
are not completely independent. Let's assume that we have an excellent American
handwritten digit classifier but our European handwritten digit classifier is still very
poor, since we only had few training data. We might want to take into account the
results of the American classifier, even if we know that the writer was European.
Mathematically, we can introduce a coupling between the modules. Let's assume
that the prediction ofthe i-th module NNi(X) = li(x)+{i is a noisy version of the
true underlying relationship li(x) and that {i is independent Gaussian noise with
variance var(N Ni(X». Furthermore, we assume that the true underlying functions
are coupled through a prior distribution (for simplicity we only assume two modules)

1) 2 P(h(x), h(x)) ex: exp(--2 -(I1(x) - 12(x)).
vare

We obtain as best estimates

A 1
h(x) = K(x) [(var(N N2 (x)) + vare) N Nt(x) + var(N Nl(x)) N N2(X)]

A 1
h(x) = K(x) [var(N N2(x» N Nl(X) + (var(N Nt (x» + vare) N N2(X)]

where
K(x) = var(N Nl (x» + var(N N2(x)) + vare.

We use density-based weighting to combine the two estimates: y(x) = P(llx)it(x)+
P(2Ix)i2(X). Note, that if vare -- 00 (no coupling) we obtain the density-based
solution and for vare -- 0 (the mappings are forced to be identical) we obtain the
variance-based solution. A generalization to more complex couplings can be found
in Section 8.2.1.

5 Experiments

We tested our approaches using the Boston housing data set (13 inputs, one conti­
nuous output). The training data set consisted of 170 samples which were divided
into 20 groups using k-means clustering. The clusters were then divided randomly
into two groups and two multi-layer perceptrons (MLP) were trained using those two

424 Volker Tresp. Michiaki Taniguchi

data sets. Table 1 shows that the performances of the individual networks are pretty
bad which indicates that both networks have only acquired local knowledge with
only limited extrapolation capability. Variance-based weighting gives considerably
better performance, although density-based weighting and the unified approach are
both slightly better. Considering the assumptions, variance-based weighting should
be superior since the underlying mappings are identical. One problem might be
that we assumed that the modules are unbiased which might not be true in regions
were a given module has seen no data.

Table 1: Generalization errors
N N2 I variance-based I density-based I unified I

0.6948 1.188 I 0.4821 I 0.4472 I 0.4235 I

6 Error-based Weighting

In most learning tasks only one data set is given and the task is to obtain optimal
predictions. Perrone (1994) has shown that simply averaging the estimates of a
small number (i. e. 10) of neural network estimators trained on the same trai­
ning data set often gives better performance than the best estimator out of this
ensemble. Alternatively, bootstrap samples of the original data set can be used for
training (Breimann, personal communication). Instead of averaging, we propose
that Equation 1, where

might give superior results (error-based weighting). Res(N Ni(X)) stands for an
estimate of the input dependent residual squared error at x. As a simple appro­
ximation, Res(N Ni(X)) can be estimated by training a neural network with the
residual squared errors of N Ni. Error-based weighting should be superior to sim­
ple averaging in particular if the estimators in the pool have different complexity.
A more complex system would obtain larger weights in regions where the map­
ping is complex, since an estimator which is locally too simple has a large residual
error, whereas in regions, where the mapping is simple, both estimators have suf­
ficient complexity, but the simpler one has less variance. In our experiments we
only tried networks with the same complexity. Preliminary results indicate that
variance-based weighting and error-based weighting are sometimes superior to sim­
ple averaging. The main reason seems to be that the local overfitting of a network
is reflected in a large variance near that location in input space. The overfitting
estimator therefore obtains a small weight in that region (compare the overfitting
of network 1 in Figure Ib near x = 0 and the small weight of network 1 close to
x = 0 in Figure lc) .

Combining Estimators Using Non-Constant Weighting Functions 425

7 Conclusions

We have presented modular ways for combining estimators. The weighting functions
of each module can be determined independently of the other modules such that
additional modules can be added without retraining of the previous system. This
can be a useful feature in the context of the problem of catastrophic forgetting:
additional data can be used to train an additional module and the knowledge in the
remaining modules is preserved. Also note that estimators which are not derived
from data can be easily included if it is possible to estimate the input dependent
certainty or competence of that estimator.

Acknowledgements: Valuable discussions with David Cohn, Michael Duff and
Cesare Alippi are greatfully acknowledged. The first author would like to thank
the Center for Biological and Computational Learning (MIT) for providing and
excellent research environment during the summer of 1994.

8 Appendix

8.1 Variance-based Weighting: Correlated Errors and Bias

We maintain that Li gi(X) = 1. In general (Le. the modules have seen the same data, or
partially the same data), we cannot assume that the errors in the individual modules are
independent. Let the M x M matrix O(x) be the covariance between the predictions of the
modules N Ni(X). With h(x) = (h 1(x) hM(X)T, the optimal weighting vector becomes

h(x) = 0-1(X) U n(x) = u' 0-1(X) U

where u is the M-dimensional unit vector.

If the individual modules are biased (biasi(x) = ED(N Ni(X)) - EYI.r(ylx)),~ we form the
M x M matrix B(x), with Bii(x) = biasi(x)biasj(x), and the minimum variance solution
is found for

h(x) = (O(x) + B(X))-1 u n(x) = u' (O(x) + B(X))-1 u.

8.2 Density-based Weighting: GEM-learning

Let's assume a training pattern (Xlo' YIo) which is not associated with a particular module.
If wi is a parameter in network N Ni the error gradient becomes

8errorlo __ (-NNo())p"(OI)8NNi(XIo)
8 ° - Ylo , Xlo S Xlo, Ylo 8 ° •

w' w'

This equation can be derived from the solution to the problem of training with missing
features (here: the true i is unknown, see Tresp, Ahmad and Neuneier, 1994). This
corresponds also to the M-step in a generalized EM algorithm, where the E-step calculates

" . P(Ylolxlo , i)P(xloli)P(i) " ° 2
P(SIXIo, YIo) = '" p o " 0 " . P(Ylolxlo, s) = G(ylo; N Ni(XIo) , (1).

L..Ji (Ylolxlo, s)P(xlols)P(s)

~ E stands for the expected value; the expectation ED is taken with respect to all data
sets of the same size.

426 Volker Tresp, Michiaki Taniguchi

using the current parameters. The M-step in the "gating network" P(xli) is particularly
simple using the well known EM-rules for Gaussian mixtures. Note, that P(module =
i, mixture component: ilxk' Yk) needs to be calculated.

8.2.1 Unified Approach: Correlated Errors and General Coupling

Let's form the vectors N N(x) = (N N 1(x), ... N NM(X))T and /(x) = (!t(x), ... , /M(x)f.
In a more general case, the prior coupling between the underlying functions is described
by

P(f(x)) = G(f(x);g(x), ~g(x))

where g{x) = (g1{X), ... ,gM{x)f. Furthermore, in a more general case, the estimates are
not independent,

P{N N{x)l/{x)) = G{N N(x); I(x), ~N{X)).

The minimum variance solution is now

The equations in Section 4 are special cases with M = 2, g{x) = 0, ~;1(x) = l/varcc x
(1, -1)(1, -If, ~N(X) = 1 (var{N N 1{x)), var(N N2{X)))T (1 is the 2D-unit matrix).

References

Ahmad, S. and Tresp, V. (1993) . Some Solutions to the Missing Feature Problem in Vision.
In S. J. Hanson, J. D. Cowan and C. L. Giles, (Eds.), Advances in Neural Information
Processing Systems 5. San Mateo, CA: Morgan Kaufmann.

Breiman, L. (1992). Stacked Regression. Dept. of Statistics, Berkeley, TR No. 367.

Hampshire, J. and Waibel, A. (1989). The meta-pi network: Building Distributed Know­
ledge Representations for Robust Pattern Recognition. TR CMU-CS-89-166, CMU, PA.

Jacobs, R. A., Jordan, M. 1., Nowlan, S. J. and Hinton, J. E. (1991). Adaptive Mixtures
of Local Experts. Neuml Computation, Vol. 3, pp. 79-87.

Meir, R. (1994). Bias, Variance and the Combination of Estimators: The Case of Linear
Least Squares. TR: Dept. of Electrical Engineering, Technion, Haifa.

Nowlan, S. J and Sejnowski, T. J. (1994). Filter Selection Model for Motion Segmentation
and Velocity Integration. J. Opt. Soc. Am. A, Vol. 11, No. 12, pp. 1-24.

Perrone, M. P. (1993). Improving Regression Estimates: Averaging Methods for Variance
Reduction with Extensions to General Convex Measure Optimization. PhD thesis. Brown
University.

Tibshirani, R. (1994). A Comparison of Some Error Estimates for Neural Network Models.
TR Department of Statistics, University of Toronto.

Tresp, V., Ahmad, S. and Neuneier, R. (1994). Training Neural Networks with Defi­
cient Data. In: Cowan, J. D., Tesauro, G., and Alspector, J., eds., Advances in Neural
Information Processing Systems 6, San Mateo, CA, Morgan Kaufman.

Tresp, V., Hollatz J. and Ahmad, S. (1993). Network Structuring and Training Using
Rule-based Knowledge. In S. J. Hanson, J. D. Cowan and C. L. Giles, (Eds.), Advances
in Neural Information Processing Systems 5, San Mateo, CA: Morgan Kaufmann.

