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Abstract 

This paper discusses the linearly weighted combination of estima­
tors in which the weighting functions are dependent on the input . 
We show that the weighting functions can be derived either by 
evaluating the input dependent variance of each estimator or by 
estimating how likely it is that a given estimator has seen data in 
the region of the input space close to the input pattern. The lat­
ter solution is closely related to the mixture of experts approach 
and we show how learning rules for the mixture of experts can be 
derived from the theory about learning with missing features. The 
presented approaches are modular since the weighting functions 
can easily be modified (no retraining) if more estimators are ad­
ded. Furthermore, it is easy to incorporate estimators which were 
not derived from data such as expert systems or algorithms. 

1 Introduction 

Instead of modeling the global dependency between input x E ~D and output y E ~ 
using a single estimator, it is often very useful to decompose a complex mapping 
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into simpler mappings in the form l 

(1) 

M 

n(x) = L hi(X) 
i=l 

The weighting functions hi(X) act as soft switches for the modules N Ni(X). In the 
mixture of experts (Jacobs et al., 1991) the decomposition is learned in an unsuper­
vised manner driven by the training data and the main goal is a system which learns 
quickly. In other cases, the individual modules are trained individually and then 
combined using Equation 1. We can distinguish two motivations: first, in the work 
on averaging estimators (Perrone, 1993, Meir , 1994, Breiman, 1992) the modules 
are trained using identical data and the weighting functions are constant and, in 
the simplest case, all equal to one. The goal is to achieve improved estimates by 
averaging the errors of the individual modules. Second, a decomposition as descri­
bed in Equation 1 might represent some "natural" decomposition of the problem 
leading to more efficient representation and training (Hampshire and Waibel, 1989). 
A good example is a decomposition into analysis and action. hi(x) might be the 
probability of disease i given the symptoms x, the latter consisting of a few dozen 
variables. The amount of medication the patient should take given disease i on the 
other hand - represented by the output of module N Ni (x) - might only depend 
on a few inputs such as weight, gender and age.2 Similarly, we might consider hie x) 
as the IF-part of the rule, evaluating the weight of the rule given x, and as N Ni(X) 
the conclusion or action which should be taken under rule i (compare Tresp, Hol­
latz and Ahmad, 1993). Equation 1 might also be the basis for biological models 
considering for example the role of neural modulators in the brain. Nowlan and 
Sejnowsky (1994) recently presented a biologically motivated filter selection model 
for visual motion in which modules provide estimates of the direction and amount 
of motion and weighting functions select the most reliable module. 

In this paper we describe novel ways of designing the weighting functions. Intui­
tively, the weighting functions should represent the competence or the certainty of 
a module, given the available information x. One possible measure is related to the 
number of training data that a module has seen in the neighborhood of x. There­
fore, P(xli), which is an estimate of the distribution of the input data which were 
used to train module i is an obvious candidate as weighting function. Alternatively, 
the certainty a module assigns to its own prediction, represented by the inverse of 
the variance 1/ var( N Ni ( x» is a plausible candidate for a weighting function. Both 
approaches seem to be the flip-sides of the same coin, and indeed, we can show that 
both approaches are extremes of a unified approach. 

IThe hat stands for an estimates value. 
2Note, that we include the case that the weighting functions and the modules might 

explicitly only depend on different subsets of x. 
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Figure 1: (a): Two data sets (1:*, 2:0) and the underlying function (continuous). 
(b) The approximations of the two neural networks trained on the data sets (conti­
nuous: 1, dashed: 2). Note, that the approximation of a network is only reliable in 
the regions of the input space in which it has "seen" data. (c) The weighting func­
tions for variance-based weighting. (d) The approximation using variance-based 
weighting (continuous). The approximation is excellent, except to the very right. 
(e) The weighting functions for density-based weighting (Gaussian mixtures appro­
ximation). (f) The approximation using density-based weighting (continuous). In 
particular to the right, the extrapolation is better than in (d). 

2 Variance-based Weighting 

Here, we assume that the different modules N Ni(x) were trained with different 
data sets {(xLY~)}:~l but that they model identical input-output relationships 
(see Figure 1 a,b ). To give a concrete example, this would correspond to the case 
that we trained two handwritten digit classifiers using different data sets and we 
want to use both for classifying new data. 

If the errors of the individual modules are uncorrelated and unbiased,3 the combined 
estimator is also unbiased and has the smallest variance if we select the weighting 
functions inversely proportional the the variance of the modules 

1 
hi(X) = var(NNi(x)) (2) 

This can be shown using var(2:::'l gi(x)N Ni(X)) = 2:::'1 gl(x)var(N Ni(X)) and 
using Lagrange mUltiplier to enforce the constraint that 2:i gi(X) = 1. Intuitively, 

3The errors are un correlated since the modules were trained with different data; corre­
lation and bias are discussed in Section 8.1. 
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Equation 2 says that a module which is uncertain about its own prediction should 
also obtain a smaller weight. We estimate the variance from the training data as 

(NN.( » '" 8N Ni(xl H-:- 18N Ni(X) 
var * x "" 8w * 8w' 

Hi is the Hessian, which can be approximated as «(12 is the output-noise variance, 
Tibshirani, 1994) 

3 Density-based Weighting 

In particular if the different modules were trained with data sets from different 
regions of the input space, it might be a reasonable assumption that the different 
modules represent different input-output relationships. In terms of our example, 
this corresponds to the problem, that we have two handwritten digit classifiers, one 
trained with American data and one with European data. If the classifiers are used 
in an international setting, confusions are possible, since, for example, an American 
seven might be confused with a European one. Formally, we introduce an additional 
variable which is equal to zero if the writer is American and is equal to one if the 
writer is European. During recall, we don't know the state of that variable and 
we are formally faced with the problem of estimation with missing inputs. From 
previous work (Ahmad and Tresp, 1993) we know that we have to integrate over 
the unknown input weighted by the conditional probability of the unknown input 
given the known variables. In this case, this translates into Equation 1, where the 
weighting function is 

In our example, P(ilx) would estimate the probability that the writer is American 
or European given the data. 

Depending on the problem P(ilx) might be estimated in different ways. If x repres­
ents continuous variables, we use a mixture of Gaussians model 

(3) 

where G(x; cij, Eij) is our notation for a normal density centered at cij and with 
covariance Eij. 

Note that we have obtained a mixture of experts network with P( ilx) as gating net­
work. A novel feature of our approach is that we maintain an estimate of the input 
data distribution (Equation 3), which is not modeled in the original mixture of ex­
perts network. This is advantageous if we have training data which are not assigned 
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to a module (in the mixture of experts, no data are assigned) which corresponds 
to training with missing inputs (the missing input is the missing assignment), for 
which the solution is known (Tresp et ai., 1994). If we use Gaussian mixtures to 
approximate P(xli), we can use generalized EM learning rules for adaptation. The 
adaptation of the parameters in the "gating network" which models P(xli) is the­
refore somewhat simpler than in the original mixture of experts learning rules (see 
Section 8.2). 

4 Unified Approach 

In reality, the modules will often represent different mappings, but these mappings 
are not completely independent. Let's assume that we have an excellent American 
handwritten digit classifier but our European handwritten digit classifier is still very 
poor, since we only had few training data. We might want to take into account the 
results of the American classifier, even if we know that the writer was European. 
Mathematically, we can introduce a coupling between the modules. Let's assume 
that the prediction ofthe i-th module NNi(X) = li(x)+{i is a noisy version of the 
true underlying relationship li(x) and that {i is independent Gaussian noise with 
variance var(N Ni(X». Furthermore, we assume that the true underlying functions 
are coupled through a prior distribution (for simplicity we only assume two modules) 

1 ) 2 P(h(x), h(x)) ex: exp(--2 -(I1(x) - 12(x ) ). 
vare 

We obtain as best estimates 

A 1 
h(x) = K(x) [(var(N N2 (x)) + vare) N Nt(x) + var(N Nl(x)) N N2(X)] 

A 1 
h(x) = K(x) [var(N N2(x» N Nl(X) + (var(N Nt (x» + vare) N N2(X)] 

where 
K(x) = var(N Nl (x» + var(N N2(x)) + vare. 

We use density-based weighting to combine the two estimates: y(x) = P(llx)it(x)+ 
P(2Ix)i2(X). Note, that if vare -- 00 (no coupling) we obtain the density-based 
solution and for vare -- 0 (the mappings are forced to be identical) we obtain the 
variance-based solution. A generalization to more complex couplings can be found 
in Section 8.2.1. 

5 Experiments 

We tested our approaches using the Boston housing data set (13 inputs, one conti­
nuous output). The training data set consisted of 170 samples which were divided 
into 20 groups using k-means clustering. The clusters were then divided randomly 
into two groups and two multi-layer perceptrons (MLP) were trained using those two 
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data sets. Table 1 shows that the performances of the individual networks are pretty 
bad which indicates that both networks have only acquired local knowledge with 
only limited extrapolation capability. Variance-based weighting gives considerably 
better performance, although density-based weighting and the unified approach are 
both slightly better. Considering the assumptions, variance-based weighting should 
be superior since the underlying mappings are identical. One problem might be 
that we assumed that the modules are unbiased which might not be true in regions 
were a given module has seen no data. 

Table 1: Generalization errors 
N N2 I variance-based I density-based I unified I 

0.6948 1.188 I 0.4821 I 0.4472 I 0.4235 I 

6 Error-based Weighting 

In most learning tasks only one data set is given and the task is to obtain optimal 
predictions. Perrone (1994) has shown that simply averaging the estimates of a 
small number (i. e. 10) of neural network estimators trained on the same trai­
ning data set often gives better performance than the best estimator out of this 
ensemble. Alternatively, bootstrap samples of the original data set can be used for 
training (Breimann, personal communication). Instead of averaging, we propose 
that Equation 1, where 

might give superior results (error-based weighting). Res(N Ni(X)) stands for an 
estimate of the input dependent residual squared error at x. As a simple appro­
ximation, Res(N Ni(X)) can be estimated by training a neural network with the 
residual squared errors of N Ni. Error-based weighting should be superior to sim­
ple averaging in particular if the estimators in the pool have different complexity. 
A more complex system would obtain larger weights in regions where the map­
ping is complex, since an estimator which is locally too simple has a large residual 
error, whereas in regions, where the mapping is simple, both estimators have suf­
ficient complexity, but the simpler one has less variance. In our experiments we 
only tried networks with the same complexity. Preliminary results indicate that 
variance-based weighting and error-based weighting are sometimes superior to sim­
ple averaging. The main reason seems to be that the local overfitting of a network 
is reflected in a large variance near that location in input space. The overfitting 
estimator therefore obtains a small weight in that region (compare the overfitting 
of network 1 in Figure Ib near x = 0 and the small weight of network 1 close to 
x = 0 in Figure lc) . 
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7 Conclusions 

We have presented modular ways for combining estimators. The weighting functions 
of each module can be determined independently of the other modules such that 
additional modules can be added without retraining of the previous system. This 
can be a useful feature in the context of the problem of catastrophic forgetting: 
additional data can be used to train an additional module and the knowledge in the 
remaining modules is preserved. Also note that estimators which are not derived 
from data can be easily included if it is possible to estimate the input dependent 
certainty or competence of that estimator. 

Acknowledgements: Valuable discussions with David Cohn, Michael Duff and 
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the Center for Biological and Computational Learning (MIT) for providing and 
excellent research environment during the summer of 1994. 

8 Appendix 

8.1 Variance-based Weighting: Correlated Errors and Bias 

We maintain that Li gi(X) = 1. In general (Le. the modules have seen the same data, or 
partially the same data), we cannot assume that the errors in the individual modules are 
independent. Let the M x M matrix O( x) be the covariance between the predictions of the 
modules N Ni(X). With h(x) = (h 1(x) .... hM(X)T, the optimal weighting vector becomes 

h(x) = 0-1(X) U n(x) = u' 0-1(X) U 

where u is the M-dimensional unit vector. 

If the individual modules are biased (biasi(x) = ED(N Ni(X)) - EYI.r(ylx)),~ we form the 
M x M matrix B(x), with Bii(x) = biasi(x)biasj(x), and the minimum variance solution 
is found for 

h(x) = (O(x) + B(X))-1 u n(x) = u' (O(x) + B(X))-1 u. 

8.2 Density-based Weighting: GEM-learning 

Let's assume a training pattern (Xlo' YIo) which is not associated with a particular module. 
If wi is a parameter in network N Ni the error gradient becomes 

8errorlo __ ( -NNo( ))p"(OI )8NNi(XIo) 
8 ° - Ylo , Xlo S Xlo, Ylo 8 ° • 

w' w' 

This equation can be derived from the solution to the problem of training with missing 
features (here: the true i is unknown, see Tresp, Ahmad and Neuneier, 1994). This 
corresponds also to the M-step in a generalized EM algorithm, where the E-step calculates 

" . P(Ylolxlo , i)P(xloli)P(i) " ° 2 
P(SIXIo, YIo) = '" p o " 0 " . P(Ylolxlo, s) = G(ylo; N Ni(XIo) , (1 ). 

L..Ji (Ylolxlo, s)P(xlols)P(s) 

~ E stands for the expected value; the expectation ED is taken with respect to all data 
sets of the same size. 
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using the current parameters. The M-step in the "gating network" P(xli) is particularly 
simple using the well known EM-rules for Gaussian mixtures. Note, that P(module = 
i, mixture component: ilxk' Yk) needs to be calculated. 

8.2.1 Unified Approach: Correlated Errors and General Coupling 

Let's form the vectors N N(x) = (N N 1(x), ... N NM(X))T and /(x) = (!t(x), ... , /M(x)f. 
In a more general case, the prior coupling between the underlying functions is described 
by 

P(f(x)) = G(f(x);g(x), ~g(x)) 

where g{x) = (g1{X), ... ,gM{x)f. Furthermore, in a more general case, the estimates are 
not independent, 

P{N N{x)l/{x)) = G{N N(x); I(x), ~N{X)). 

The minimum variance solution is now 

The equations in Section 4 are special cases with M = 2, g{x) = 0, ~;1(x) = l/varcc x 
(1, -1)(1, -If, ~N(X) = 1 (var{N N 1{x)), var(N N2{X)))T (1 is the 2D-unit matrix). 
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