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Abstract 

The TNM staging system has been used since the early 1960's 
to predict breast cancer patient outcome. In an attempt to in­
crease prognostic accuracy, many putative prognostic factors have 
been identified. Because the TNM stage model can not accom­
modate these new factors, the proliferation of factors in breast 
cancer has lead to clinical confusion. What is required is a new 
computerized prognostic system that can test putative prognostic 
factors and integrate the predictive factors with the TNM vari­
ables in order to increase prognostic accuracy. Using the area un­
der the curve of the receiver operating characteristic, we compare 
the accuracy of the following predictive models in terms of five 
year breast cancer-specific survival: pTNM staging system, princi­
pal component analysis, classification and regression trees, logistic 
regression, cascade correlation neural network, conjugate gradient 
descent neural, probabilistic neural network, and backpropagation 
neural network. Several statistical models are significantly more ac-
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curate than the TNM staging system. Logistic regression and the 
backpropagation neural network are the most accurate prediction 
models for predicting five year breast cancer-specific survival 

1 INTRODUCTION 

For over thirty years measuring cancer outcome has been based on the TNM staging 
system (tumor size, number of lymph nodes with metastatic disease, and distant 
metastases) (Beahr et. al., 1992). There are several problems with this model 
(Burke and Henson, 1993). First, it is not very accurate, for breast cancer it is 
44% accurate. Second its accuracy can not be improved because predictive vari­
ables can not be added to the model. Third, it does not apply to all cancers. In 
this paper we compare computerized prediction models to determine if they can 
improve prognostic accuracy. Artificial neural networks (ANN) are a class of non­
linear regression and discrimination models. ANNs are being used in many areas 
of medicine, with several hundred articles published in the last year. Representa­
tive areas of research include anesthesiology (Westenskow et. al., 1992) , radiology 
(Tourassi et . al. , 1992) , cardiology (Leong and Jabri, 1982) , psychiatry (Palombo, 
1992), and neurology (Gabor and Seyal , 1992). ANNs are being used in cancer 
research including image processing (Goldberg et . al., 1992) , analysis of labora­
tory data for breast cancer diagnosis (0 Leary et. al., 1992), and the discovery of 
chemotherapeutic agents (Weinstein et . al., 1992). It should be pointed out that 
the analyses in this paper rely upon previously collected prognostic factors. These 
factors were selected for collection because they were significant in a generalized 
linear model such as the linear or logistic models . There is no predictive model that 
can improve upon linear or logistic prediction models when the predictor variables 
meet the assumptions of these models and there are no interactions. Therefore 
he objective of this paper is not to outperform linear or logistic models on these 
data. Rather, our objective is to show that, with variables selected by generalized 
linear models, artificial neural networks can perform as well as the best traditional 
models . There is no a priori reason to believe that future prognostic factors will 
be binary or linear, and that there will not be complex interactions between prog­
nostic factors. A further objective of this paper is to demonstrate that artificial 
neural networks are likely to outperform the conventional models when there are 
unanticipated nonmonotonic factors or complex interactions. 

2 METHODS 

2.1 DATA 

The Patient Care Evaluation (PCE) data set is collected by the Commission on 
Cancer of the American College of Surgeons (ACS). The ACS, in October 1992, 
requested cancer information from hospital tumor registries in the United States. 
The ACS asked for the first 25 cases of breast cancer seen at that institution in 1983, 
and it asked for follow up information on each of these 25 patients through the date 
of the request. These are only cases of first breast cancer . Follow-up information 
included known deaths. The PCE data set contains, at best, eight year follow-up. 
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We chose to use a five year survival end-point . This analysis is for death due to 
breast cancer, not all cause mortality. 

For this analysis cases with missing data, and cases censored before five years, are 
not included so that the prediction models can be compared without putting any 
prediction model at a disadvantage. We randomly divided the data set into training, 
hold-out, and testing subsets of 3,100, 2,069, and 3,102 cases, respectively. 

2.2 MODELS 

The TMN stage model used in this analysis is the pathologic model (pTNM) based 
on the 1992 American Joint Committee on Cancer's Manual for the Staging of 
Cancer (Beahr et. al., 1992). The pathologic model relies upon pathologically de­
termined tumor size and lymph nodes, this contrasts with clinical staging which 
relies upon the clinical examination to provide tumor size and lymph node infor­
mation. To determine the overall accuracy of the TNM stage model we compared 
the model's prediction for each patient, where the individual patient's prediction 
is the fraction of all the patients in that stage who survive, to each patient's true 
outcome. 

Principal components analysis, is a data reduction technique based on the linear 
combinations of predictor variables that minimizes the variance across patients (Jol­
lie, 1982). The logistic regression analysis is performed in a stepwise manner, with­
out interaction terms, using the statistical language S-PLUS (S-PLUS, 1992), with 
the continuous variable age modeled with a restricted cubic spline to avoid assuming 
linearity (Harrell et. al., 1988). Two types of Classification and Regression Tree 
(CART) (Breiman et. al., 1984) analyses are performed using S-PLUS. The first 
was a 9-node pruned tree (with 10-fold cross validation on the deviance), and the 
second was a shrunk tree with 13.7 effective nodes. 

The multilayer perceptron neural network training in this paper is based on the 
maximum likelihood function unless otherwise stated, and backpropagation refers 
to gradient descent. Two neural networks that are not multilayer perceptrons are 
tested. They are the Fuzzy ARTMAP neural network (Carpenter et. al., 1991) and 
the probabilistic neural network (Specht, 1990). 

2.3 ACCURACY 

The measure of comparative accuracy is the area under the curve of the receiver 
operating characteristic (Az) . Generally, the Az is a nonparametric measure of 
discrimination. Square error summarizes how close each patient's predicted value is 
to its true outcome. The Az measures the relative goodness of the set of predictions 
as a whole by comparing the predicted probability of each patient with that of all 
other patients. The computational approach to the Az that employs the trapezoidal 
approximation to the area under the receiver operating characteristic curve for 
binary outcomes was first reported by Bamber (Bamber, 1975), and later in the 
medical literature by Hanley (Hanley and McNeil, 1982). This was extended by 
Harrell (Harrell et. al., 1988) to continuous outcomes. 
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Table 1: PCE 1983 Breast Cancer Data: 5 Year Survival Prediction, 54 Variables. 

PREDICTION MODEL ACCURACY· SPECIFICATIONS 

pTNM Stages 
Principal Components Analysis 
CART, pruned 
CART, shrunk 
Stepwise Logistic regression 
Fuzzy ARTMAP ANN 
Cascade correlation ANN 
Conjugate gradient descent ANN 
Probabilistic ANN 
Backpropagation ANN 

.720 

.714 

.753 

.762 

.776 

.738 

.761 

.774 

.777 

.784 

O,I,I1A,I1B,IIIA,I1IB,IV 
one scaling iteration 
9 nodes 
13.7 nodes 
with cubic splines 
54-F2a, 128-1 
54-21-1 
54-30-1 
bandwidth = 16s 
54-5-1 

* The area under the curve of the receiver operating characteristic. 

3 RESULTS 

All results are based on the independent variable sample not used for training (i.e., 
the testing data set), and all analyses employ the same testing data set. Using 
the PCE breast cancer data set, we can assess the accuracy of several prediction 
models using the most powerful of the predictor variables available in the data set 
(See Table 1). 

Principal components analysis is not expected to be a very accurate model; with 
one scaling iteration, its accuracy is .714. Two types of classification and regres­
sion trees (CART), pruned and shrunk, demonstrate accuracies of .753 and .762, 
respectively. Logistic regression with cubic splines for age has an accuracy of .776. 
In addition to the backpropagation neural network and the probabilistic neural net­
work, three types of neural networks are tested. Fuzzy ARTMAP's accuracy is 
the poorest at .738. It was too computationally intensive to be a practical model. 
Cascade-correlation and conjugate gradient descent have the potential to do as well 
as backpropagation. The PNN accuracy is .777. The PNN has many interesting 
features, but it also has several drawbacks including its storage requirements. The 
backpropagation neural network's accuracy is .784.4. 

4 DISCUSSION 

For predicting five year breast cancer-specific survival, several computerized pre­
diction models are more accurate than the TNM stage system, and artificial neural 
networks are as good as the best traditional statistical models. 
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Abstract 

Product units provide a method of automatically learning the 
higher-order input combinations required for efficient learning in 
neural networks. However, we show that problems are encoun­
tered when using backpropagation to train networks containing 
these units. This paper examines these problems, and proposes 
some atypical heuristics to improve learning. Using these heuristics 
a constructive method is introduced which solves well-researched 
problems with significantly less neurons than previously reported. 
Secondly, product units are implemented as candidate units in the 
Cascade Correlation (Fahlman & Lebiere, 1990) system. This re­
sulted in smaller networks which trained faster than when using 
sigmoidal or Gaussian units. 

1 Introduction 

It is well-known that supplementing the inputs to a neural network with higher-order 
combinations ofthe inputs both increases the capacity of the network (Cover, 1965) 
and the the ability to learn geometrically invariant properties (Giles & Maxwell, 
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1987). However, there is a combinatorial explosion of higher order terms as the 
number of inputs to the network increases. Yet in order to implement a certain 
logical function, in most cases only a few of these higher order terms are required 
(Redding et al., 1993). 

The product units (PUs) introduced by (Durbin & Rumelhart, 1989) attempt to 
make use of this fact. These networks have the advantage that, given an appropriate 
training algorithm, the units can automatically learn the higher order terms that 
are required to implement a specific logical function. 

In these networks the hidden layer units compute the weighted product ofthe inputs, 
that is 

N N 

II X~i instead of 2:XiWi (1) 
i=l i=l 

as in standard networks. An additional advantage of PUs is the increased infor­
mation capacity of these units compared to standard summation networks. It is 
approximately 3N (Durbin & Rumelhart, 1989), compared to 2N for a single 
threshold logic function (Cover, 1965), where N is the number of inputs to the 
unit. 

The larger capacity means that the same functions can be implemented by networks 
containing less units. This is important for certain applications such as speech 
recognition where the data bandwidth is high or if realtime implementations are 
desired. 

When PUs are used to process Boolean inputs, best performance is obtained 
(Durbin & Rumelhart, 1989) by using inputs of {+1, -I}. If the imaginary compo­
nent is ignored, with these inputs, the activation function is equivalent to a cosine 
summation function with {-1,+1} inputs mapped {I,D} (Durbin & Rumelhart, 
1989). In the remainder of this paper the terms product unit (PU) and cos{ine) 
unit will be used interchangeably as all the problems examined have Boolean inputs. 

2 Learning with Product Units 

As the basic mechanism of a PU is multiplicative instead of additive, one would 
expect that standard neural network training methods and procedures cannot be 
directly applied when training these networks. This is indeed the case. If a neural 
network simulation environment is available the basic functionality of a PU can be 
obtained by simply adding the cos function cos( 1(" * input) to the existing list of 
transfer functions. This assumes that Boolean mappings are being implemented 
and the appropriate {-1,+1} - {I,D} mapping has been performed on the input 
vectors. However, if we then attempt to train a network on on the parity-6 problem 
shown in (Durbin & Rumelhart, 1989), it is found that the standard backpropa­
gat ion (BP) algorithm simply does not work. We have found two main reasons for 
this. 

The first is weight initialization. A typical first step in the backpropagation proce­
dure is to initialize all weights to small random values. The main reason for this 
is to use the dynamic range of the sigmoid function and it's derivative. However, 
the dynamic range of a PU is unlimited. Initializing the weights to small random 
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values results in an input to the unit where the derivative is small. So apart from 
choosing small weights centered around ml" with n = ±1, ±2, ... this is the worst 
possible choice. In our simulations weights were initialized randomly in the range 
[-2,2]. In fact, learning seems insensitive to the size of the weights, as long as they 
are large enough. 

The second problem is local minima. Previous reports have mentioned this prob­
lem, (Lapedes & Farber, 1987) commented that "using sin's often leads to nu­
merical problems, and nonglobal minima, whereas sigmoids seemed to avoid such 
problems". This comment summarizes our experience of training with PUs. For 
small problems (less than 3 inputs) backpropagation provides satisfactory training. 
However, when the number of inputs are increased beyond this number, even with 
th: .weight initialization in the correct range, training usually ends up in a local 
mInIma. 

3 Training Algorithms 

With these aspects in mind, the following training algorithms were evaluated: online 
and batch versions of Backpropagation (BP), Simulated Annealing (SA), a Random 
Search Algorithm (RSA) and combinations of these algorithms. 

BP was used as a benchmark and for use in combination with the other algorithms. 
The Delta-Bar-Delta learning rate adaptation rule (Jacobs, 1988) was used along 
with the batch version of BP to accelerate convergence, with the parameters were 
set to 0 = 0.35, K, = 0.05 and ¢ = 0.90. RSA is a global search method (i.e. 
the whole weight space is explored during training). Weights are randomly chosen 
from a predefined distribution, and replaced if this results in an error decrease. SA 
(Kirkpatrick et aI., 1983) is a standard optimization method. The operation of SA 
is similar to RSA, with the difference that with a decreasing probability solutions 
are accepted which increase the training error. The combination of algorithms were 
chosen (BP & SA, BP & RSA) to combine the benefits of global and local search. 
Used in this manner, BP is used to find the local minima. If the training error at 
the minima is sufficiently low, training is terminated. Otherwise, the global method 
initializes the weights to another position in weight space from which local training 
can continue. 

The BP-RSA combination requires further explanation. Several BP-(R)SA combi­
nations were evaluated, but best performance was obtained using a fixed number of 
iterations of BP (in this case 120) along with one initial iteration of RSA. In this 
manner BP is used to move to the local minima, and if the training error is still 
above the desired level the RSA algorithm generates a new set of random weights 
from which BP can start again. 

The algorithms were evaluated on two problems, the parity problem and learning all 
logical functions of 2 and 3 inputs. The infamous parity problem is (for the product 
unit at least) an appropriate task. As illustrated by (Durbin & Rumelhart, 1989), 
this problem can be solved by one product unit. The question is whether the 
training algorithms can find a solution. The target values are {-1, + 1}, and the 
output is taken to be correct if it has the correct sign. The simulation results are 
shown in Table 1. It should be noted that one epoch of both SA and RSA involves 
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relaxing the network across the training set for every weight, so in computational 
terms their nepoeh values should be multiplied by a factor of (N + 1). 

Parity Online BP Batch BP SA RSA 
N neonv nepoeh n eonv nepoeh neonv nepoeh neon v nepoeh 

6 10 30.4 7 34 10 12.6 10 15.2 
8 8 101.3 2 700 10 52.8 10 45.4 
10 6 203.3 0 - 10 99.9 10 74.1 

Table 1: The parity N problem: The table shows neon v the number of runs out of 
10 that have converged and nepoeh' the average number of training epochs required 
when training converged. 

For the parity problem it is clear that local learning alone does not provide good 
convergence. For this problem, global search algorithms have the following advan­
tages: (1) The search space is bounded (all weights are restricted to [-2, +2]) (2) 
The dimension of search space is low (maximum of 11 weights for the problems 
examined). (3) The fraction of the weight space which satisfies the parity problem 
relative to the total bounded weight space is high. 

In a second set of simulations, one product unit was trained to calculate all 2(2N ) 

logical functions of the N input variables. Unfortunately, this is only practical for 
N E {2,3} . For N = 2 there are only 16 functions, and a product unit has no 
problem learning all these functions rapidly with all four training algorithms. In 
comparison a single summation unit can learn 14 (not the XOR & XNOR functions). 
For N =3, a product unit is able to implement 208 of the 256 functions, while a single 
summation unit could only implement 104. The simulation results are displayed in 
Table 2. 

Online BP Batch BP BP-RSA 

Table 2: Learning all logical functions of 3 inputs: The rows display nlogie , the 
average number of logical functions implemented by a product unit and nepoeh, the 
number of epochs required for convergence. Ten simulations were performed for 
each of the 256 logical functions , each for a maximum of 1,000 iterations. 

4 Constructive Learning with Product Units 

Selecting the optimal network architecture for a specific application is a nontrivial 
and time-consuming task, and several algorithms have been proposed to automate 
this process. These include pruning methods and growing algorithms. In this section 
a simple method is proposed for adding PUs to the hidden layer of a three layer 
network. The output layer contains a single sigmoidal unit . 

Several constructive algorithms proceed by freezing a subset of the weights and 
limiting training to the newly added units. As mentioned earlier, for PUs a global 
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Figure 1: The number of units required for learning the random mapping problems 
by the 'Tiling', 'Upstart' and SIM algorithms. 

search is required to solve the local-minima problems. Freezing a subset of the 
weights restricts the new solution to an affine subset of the existing weight space, 
often resulting in non-minimal networks (Ash, 1989). For this reason a simple 
incremental method (SIM) was implemented which retains the global search for all 
weights during the whole training process. The method used in our simulations is 
as follows: 

• Train a network using the BP-RSA combination on a network with a spec­
ified minimum number of hidden PUs. 

• If there is no convergence within a specified number of epochs, add a PU to 
the network. Reinitialize weights and continue training with the BP-RSA 
combination . 

• Repeat process until a solution is found or the network has grown a prede­
termined maximum size. 

The method of (Ash , 1989) was also evaluated, where neurons with small weights 
were added to a network according to certain criteria. The SIM performed better, 
possibly because of the global search performed by the RSA step. 

The 'Upstart' (Frean, 1990) and 'Tiling' (Mezard & Nadal, 1989) constructive 
algorithms were chosen as benchmarks. A constructive PU network was trained 
on two problems described in these papers, namely the parity problem and the 
random mapping problem. In (Frean, 1990) it was reported that the Upstart 
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algorithm required N units for all parity N problems, and 1,000 training epochs 
were sufficient for all values of N except N = 10, which required 10,000. As seen 
earlier, one PU is able to perform any parity function, and SIM required an an 
average of 74.1 iterations for N = 6,8,10. 

The random mapping problem is defined by assigning each of the 2N patterns its 
target { -1, + I} with 50% probability. This is a difficult problem, due to the absence 
of correlations and structure in the input. As in (Frean, 1990; Mezard & Nadal, 
1989) the average of 25 runs were performed, each on a different training set. The 
number of units required by SIM is plotted in Figure 1. The values for the Tiling 
and Upstart algorithms are approximate and were obtained through inspection from 
a similar graph in (Frean, 1990). 

5 U sing Cosine Candidate Units in Cascade Correlation 

Initially we wanted to compare the performance of SIM with the well-known 
'cascade-correlation' (CC) algorithm of (Fahlman & Lebiere, 1990). However, the 
network architectures differ and a direct comparison between the number of units in 
the respective architectures does not reflect the efficiency of the algorithms. Instead, 
it was decided to integrate PUs into the CC system as candidate units. 

For these simulations a public domain version of CC was used (White, 1993) which 
supports four different candidate types; the asymmetric sigmoid, symmetric sig­
moid, variable sigmoid and gaussian units. Facilities exist for either constructing 
homogeneous networks by selecting one unit type, or training with a pool of differ­
ent units allowing the construction of hybrid networks. It was thus relatively simple 
to add PU candidate units to the system. Table 3 displays the results when CC was 
trained on the random logic problem using three types of homogeneous candidate 
units. 

N CC Sigmoid CC Gauss CC PU 
nunih nepOCh6 nunih nepoch, nunih n epoch6 

7 6.6 924.5 6.7 642.6 5.7 493.8 
8 12.1 1630.9 11.5 1128.2 9.9 833.8 
9 20.5 2738.3 18.4 1831.1 16.4 1481.8 
10 32.9 4410.9 30.2 2967.6 26.6 2590.8 

Table 3: Learning random logic functions of N inputs: The table shows nunih' 

the average number of units required and nepoch6' the average number of training 
epochs required for convergence of CC using sigmoidal, Gaussian and PU candidate 
units . Figures are based on 25 simulations. 

In a separate experiment the performance of hybrid networks were re-evaluated on 
the same random logic problem. To enable a fair competition between candidate 
units of different types, the simulations were run with 40 candidate units, 8 of each 
type. The simulations were evaluated on 25 trails for each of the random mapping 
problems (7,8,9 and 10 inputs, a total of 1920 input vectors). In total 1460 hidden 
units were allocated, and in all cases PU candidate units were chosen above units 
of the 4 other types during the competitive stage. During this comparison all 
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parameters were set to default values, i.e. the weights of the PU candidate units 
were random numbers initialized in the range of [-1, +1]. As discussed earlier, this 
puts the PUs at a slight disadvantage as their optimum range is [-2, +2]. 

6 Discussion 

The BP-RSA combination is in effect equivalent to the 'local optimization with 
random restarts' process discussed by (Karmarkar & Karp, 1982), where the local 
optimization is this case is performed by the BP algorithm. They reported that 
for certain problems where the error surface was 'exceedingly mountainous', mul­
tiple random-start local optimization outperformed more sophisticated methods. 
We hypothesize that adding PUs to a network makes the error surface sufficiently 
mountainous so that a global search is required. 

As expected, the higher separating capacity of the PU enables the construction of 
networks with less neurons than those produced by the Tiling and Upstart algo­
rithms. The fact that SIM works this well is mainly a result of the error surface; the 
surface is so irregular that even training a network of fixed architecture is best done 
by reinitializing the weights if convergence does not occur within certain bounds. 
This again is in accordance with the results of (Karmarkar & Karp, 1982) discussed 
above. 

When used in CC we hypothesize that there are three main reasons for the choice 
of PUs above any of the other types during the competitive learning phase. Firstly, 
the higher capacity (in a information capacity sense) of the PUs allows a better 
correlation with the error signal. Secondly, having N competing candidate units is 
equivalent to selecting the best of N random restarts, and performs the required 
global search. Thirdly, although the error surface of networks with PUs contains 
more local minima than when using standard transfer functions, the surface is locally 
smooth. This allows effective use of higher-order error derivatives, resulting in fast 
convergence by the quickprop algorithm. 

In (Dawson & Schopflocher, 1992) it was shown that networks with Gaussian units 
train faster and require less units than networks with standard sigmoidal units. 
This is supported by our results shown in Table 3. However, for the problem 
examined, PUs outperform Gaussian units by approximately the same margin as 
Gaussian units outperform sigmoidal units. It should also be noted that these 
problems where not chosen for their suitability for PUs. In fact, if the problems are 
symmetric/regular the difference in performance is expected to increase. 

7 Conclusion 

Of the learning algorithms examined BP provides the fastest training, but is prone 
to nonglobal minima. On the other hand, global search methods are impractical 
for larger networks. For the problems examined, a combination of local and global 
search methods were found to perform best. Given a network containing PUs, there 
are some atypical heuristics that can be used: (a) correct weight initialization (b) 
reinitialization of the weights if convergence is not rapidly reached. In addition, 
the representational power of PUs have enabled us to solve standard problems 
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using significantly smaller networks than previously reported, using a very simple 
constructive method. When implemented in the CC architecture, for the problems 
examined PUs resulted in smaller networks which trained faster than other units. 
When included in a pool of competing candidate units, simulations showed that in 
all cases PU candidate units were preferred over candidate units of the other four 
types. 
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