
Comparing the prediction accuracy of
artificial neural networks and other
statistical models for breast cancer

survival

Harry B. Burke
Department of Medicine

New York Medical College
Valhalla, NY 10595

David B. Rosen
Department of Medicine

New York Medical College
Valhalla, NY 10595

Philip H. Goodman
Department of Medicine

University of Nevada School of Medicine
Reno, Nevada 89520

Abstract

The TNM staging system has been used since the early 1960's
to predict breast cancer patient outcome. In an attempt to in­
crease prognostic accuracy, many putative prognostic factors have
been identified. Because the TNM stage model can not accom­
modate these new factors, the proliferation of factors in breast
cancer has lead to clinical confusion. What is required is a new
computerized prognostic system that can test putative prognostic
factors and integrate the predictive factors with the TNM vari­
ables in order to increase prognostic accuracy. Using the area un­
der the curve of the receiver operating characteristic, we compare
the accuracy of the following predictive models in terms of five
year breast cancer-specific survival: pTNM staging system, princi­
pal component analysis, classification and regression trees, logistic
regression, cascade correlation neural network, conjugate gradient
descent neural, probabilistic neural network, and backpropagation
neural network. Several statistical models are significantly more ac-

1064 Harry B. Burke, David B. Rosen, Philip H. Goodman

curate than the TNM staging system. Logistic regression and the
backpropagation neural network are the most accurate prediction
models for predicting five year breast cancer-specific survival

1 INTRODUCTION

For over thirty years measuring cancer outcome has been based on the TNM staging
system (tumor size, number of lymph nodes with metastatic disease, and distant
metastases) (Beahr et. al., 1992). There are several problems with this model
(Burke and Henson, 1993). First, it is not very accurate, for breast cancer it is
44% accurate. Second its accuracy can not be improved because predictive vari­
ables can not be added to the model. Third, it does not apply to all cancers. In
this paper we compare computerized prediction models to determine if they can
improve prognostic accuracy. Artificial neural networks (ANN) are a class of non­
linear regression and discrimination models. ANNs are being used in many areas
of medicine, with several hundred articles published in the last year. Representa­
tive areas of research include anesthesiology (Westenskow et. al., 1992) , radiology
(Tourassi et . al. , 1992) , cardiology (Leong and Jabri, 1982) , psychiatry (Palombo,
1992), and neurology (Gabor and Seyal , 1992). ANNs are being used in cancer
research including image processing (Goldberg et . al., 1992) , analysis of labora­
tory data for breast cancer diagnosis (0 Leary et. al., 1992), and the discovery of
chemotherapeutic agents (Weinstein et . al., 1992). It should be pointed out that
the analyses in this paper rely upon previously collected prognostic factors. These
factors were selected for collection because they were significant in a generalized
linear model such as the linear or logistic models . There is no predictive model that
can improve upon linear or logistic prediction models when the predictor variables
meet the assumptions of these models and there are no interactions. Therefore
he objective of this paper is not to outperform linear or logistic models on these
data. Rather, our objective is to show that, with variables selected by generalized
linear models, artificial neural networks can perform as well as the best traditional
models . There is no a priori reason to believe that future prognostic factors will
be binary or linear, and that there will not be complex interactions between prog­
nostic factors. A further objective of this paper is to demonstrate that artificial
neural networks are likely to outperform the conventional models when there are
unanticipated nonmonotonic factors or complex interactions.

2 METHODS

2.1 DATA

The Patient Care Evaluation (PCE) data set is collected by the Commission on
Cancer of the American College of Surgeons (ACS). The ACS, in October 1992,
requested cancer information from hospital tumor registries in the United States.
The ACS asked for the first 25 cases of breast cancer seen at that institution in 1983,
and it asked for follow up information on each of these 25 patients through the date
of the request. These are only cases of first breast cancer . Follow-up information
included known deaths. The PCE data set contains, at best, eight year follow-up.

Prediction Accuracy of Models for Breast Cancer Survival 1065

We chose to use a five year survival end-point . This analysis is for death due to
breast cancer, not all cause mortality.

For this analysis cases with missing data, and cases censored before five years, are
not included so that the prediction models can be compared without putting any
prediction model at a disadvantage. We randomly divided the data set into training,
hold-out, and testing subsets of 3,100, 2,069, and 3,102 cases, respectively.

2.2 MODELS

The TMN stage model used in this analysis is the pathologic model (pTNM) based
on the 1992 American Joint Committee on Cancer's Manual for the Staging of
Cancer (Beahr et. al., 1992). The pathologic model relies upon pathologically de­
termined tumor size and lymph nodes, this contrasts with clinical staging which
relies upon the clinical examination to provide tumor size and lymph node infor­
mation. To determine the overall accuracy of the TNM stage model we compared
the model's prediction for each patient, where the individual patient's prediction
is the fraction of all the patients in that stage who survive, to each patient's true
outcome.

Principal components analysis, is a data reduction technique based on the linear
combinations of predictor variables that minimizes the variance across patients (Jol­
lie, 1982). The logistic regression analysis is performed in a stepwise manner, with­
out interaction terms, using the statistical language S-PLUS (S-PLUS, 1992), with
the continuous variable age modeled with a restricted cubic spline to avoid assuming
linearity (Harrell et. al., 1988). Two types of Classification and Regression Tree
(CART) (Breiman et. al., 1984) analyses are performed using S-PLUS. The first
was a 9-node pruned tree (with 10-fold cross validation on the deviance), and the
second was a shrunk tree with 13.7 effective nodes.

The multilayer perceptron neural network training in this paper is based on the
maximum likelihood function unless otherwise stated, and backpropagation refers
to gradient descent. Two neural networks that are not multilayer perceptrons are
tested. They are the Fuzzy ARTMAP neural network (Carpenter et. al., 1991) and
the probabilistic neural network (Specht, 1990).

2.3 ACCURACY

The measure of comparative accuracy is the area under the curve of the receiver
operating characteristic (Az) . Generally, the Az is a nonparametric measure of
discrimination. Square error summarizes how close each patient's predicted value is
to its true outcome. The Az measures the relative goodness of the set of predictions
as a whole by comparing the predicted probability of each patient with that of all
other patients. The computational approach to the Az that employs the trapezoidal
approximation to the area under the receiver operating characteristic curve for
binary outcomes was first reported by Bamber (Bamber, 1975), and later in the
medical literature by Hanley (Hanley and McNeil, 1982). This was extended by
Harrell (Harrell et. al., 1988) to continuous outcomes.

1066 Harry B. Burke, David B. Rosen, Philip H. Goodman

Table 1: PCE 1983 Breast Cancer Data: 5 Year Survival Prediction, 54 Variables.

PREDICTION MODEL ACCURACY· SPECIFICATIONS

pTNM Stages
Principal Components Analysis
CART, pruned
CART, shrunk
Stepwise Logistic regression
Fuzzy ARTMAP ANN
Cascade correlation ANN
Conjugate gradient descent ANN
Probabilistic ANN
Backpropagation ANN

.720

.714

.753

.762

.776

.738

.761

.774

.777

.784

O,I,I1A,I1B,IIIA,I1IB,IV
one scaling iteration
9 nodes
13.7 nodes
with cubic splines
54-F2a, 128-1
54-21-1
54-30-1
bandwidth = 16s
54-5-1

* The area under the curve of the receiver operating characteristic.

3 RESULTS

All results are based on the independent variable sample not used for training (i.e.,
the testing data set), and all analyses employ the same testing data set. Using
the PCE breast cancer data set, we can assess the accuracy of several prediction
models using the most powerful of the predictor variables available in the data set
(See Table 1).

Principal components analysis is not expected to be a very accurate model; with
one scaling iteration, its accuracy is .714. Two types of classification and regres­
sion trees (CART), pruned and shrunk, demonstrate accuracies of .753 and .762,
respectively. Logistic regression with cubic splines for age has an accuracy of .776.
In addition to the backpropagation neural network and the probabilistic neural net­
work, three types of neural networks are tested. Fuzzy ARTMAP's accuracy is
the poorest at .738. It was too computationally intensive to be a practical model.
Cascade-correlation and conjugate gradient descent have the potential to do as well
as backpropagation. The PNN accuracy is .777. The PNN has many interesting
features, but it also has several drawbacks including its storage requirements. The
backpropagation neural network's accuracy is .784.4.

4 DISCUSSION

For predicting five year breast cancer-specific survival, several computerized pre­
diction models are more accurate than the TNM stage system, and artificial neural
networks are as good as the best traditional statistical models.

References

Bamber D (1975). The area above the ordinal dominance graph and the area below
the receiver operating characteristic. J Math Psych 12:387-415.

Beahrs OH, Henson DE, Hutter RVP, Kennedy BJ (1992). Manual for staging of

Prediction Accuracy of Models for Breast Cancer Survival 1067

cancer, 4th ed. Philadelphia: JB Lippincott.

Burke HB, Henson DE (1993) . Criteria for prognostic factors and for an enhanced
prognostic system. Cancer 72:3131-5.

Breiman L, Friedman JH, Olshen RA (1984). Classification and Regression Trees.
Pacific Grove, CA: Wadsworth and Brooks/Cole.

Carpenter GA, Grossberg S, Rosen DB (1991). Fuzzy ART: Fast stable learning
and categorization of analog patterns by an adaptive resonance system. Neural
Networks 4:759-77l.

Gabor AJ, M. Seyal M (1992) . Automated interictal EEG spike detection using
artificial neural networks. Electroencephalogr Clin Neurophysiology 83 :271-80.

Goldberg V, Manduca A, Ewert DL (1992). Improvement in specificity of ultra­
sonography for diagnosis of breast tumors by means of artificial intelligence. Med
Phys 19:1275-8l.

Hanley J A, McNeil BJ (1982). The meaning of the use of the area under the receiver
operating characteristic (ROC) curve. Radiology 143:29-36.

Harrell FE, Lee KL, Pollock BG (1988). Regression models in clinical studies:
determining relationships between predictors and response. J Natl Cancer Instit
80:1198-1202.

Jollife IT (1986). Principal Component Analysis. New York: Springer-Verlag, 1986.

Leong PH, J abri MA (1982). MATIC - an intracardiac tachycardia classification
system. PACE 15:1317-31,1982.

O'Leary TJ, Mikel UV, Becker RL (1992). Computer-assisted image interpretation:
use of a neural network to differentiate tubular carcinoma from sclerosing adenosis.
Modern Pathol 5:402-5.

Palombo SR (1992). Connectivity and condensation in dreaming. JAm Psychoanal
Assoc 40:1139-59.

S-PLUS (1991), v 3.0. Seattle, WA; Statistical Sciences, Inc.

Specht DF (1990). Probabilistic neural networks. Neural Networks 3:109-18.

Tourassi GD, Floyd CE, Sostman HD, Coleman RE (1993). Acute pulmonary
embolism: artificial neural network approach for diagnosis. Radiology 189:555-58.

Weinstein IN, Kohn KW, Grever MR et. al. (1992) Neural computing in cancer
drug development: predicting mechanism of action. Science 258:447-51.

Westenskow DR, Orr JA, Simon FH (1992) . Intelligent alarms reduce anesthesiol­
ogist's response time to critical faults. Anesthesiology 77:1074-9, 1992.

Learning with Product Units

Laurens R. Leerink
Australian Gilt Securities LTD

37-49 Pitt Street
NSW 2000, Australia

laurens@sedal.su.oz.au

Bill G. Horne
NEC Research Institute

4 Independence Way
Princeton, NJ 08540, USA
horne@research.nj.nec.com

C. Lee Giles
NEC Research Institute

4 Independence Way
Princeton, NJ 08540, USA
giles@research.nj.nec.com

Marwan A. Jabri
Department of Electrical Engineering

The University of Sydney
NSW 2006, Australia

marwan@sedal.su.oz.au

Abstract

Product units provide a method of automatically learning the
higher-order input combinations required for efficient learning in
neural networks. However, we show that problems are encoun­
tered when using backpropagation to train networks containing
these units. This paper examines these problems, and proposes
some atypical heuristics to improve learning. Using these heuristics
a constructive method is introduced which solves well-researched
problems with significantly less neurons than previously reported.
Secondly, product units are implemented as candidate units in the
Cascade Correlation (Fahlman & Lebiere, 1990) system. This re­
sulted in smaller networks which trained faster than when using
sigmoidal or Gaussian units.

1 Introduction

It is well-known that supplementing the inputs to a neural network with higher-order
combinations ofthe inputs both increases the capacity of the network (Cover, 1965)
and the the ability to learn geometrically invariant properties (Giles & Maxwell,

538 Laurens Leerink, C. Lee Giles, Bill G. Home, Marwan A. Jabri

1987). However, there is a combinatorial explosion of higher order terms as the
number of inputs to the network increases. Yet in order to implement a certain
logical function, in most cases only a few of these higher order terms are required
(Redding et al., 1993).

The product units (PUs) introduced by (Durbin & Rumelhart, 1989) attempt to
make use of this fact. These networks have the advantage that, given an appropriate
training algorithm, the units can automatically learn the higher order terms that
are required to implement a specific logical function.

In these networks the hidden layer units compute the weighted product ofthe inputs,
that is

N N

II X~i instead of 2:XiWi (1)
i=l i=l

as in standard networks. An additional advantage of PUs is the increased infor­
mation capacity of these units compared to standard summation networks. It is
approximately 3N (Durbin & Rumelhart, 1989), compared to 2N for a single
threshold logic function (Cover, 1965), where N is the number of inputs to the
unit.

The larger capacity means that the same functions can be implemented by networks
containing less units. This is important for certain applications such as speech
recognition where the data bandwidth is high or if realtime implementations are
desired.

When PUs are used to process Boolean inputs, best performance is obtained
(Durbin & Rumelhart, 1989) by using inputs of {+1, -I}. If the imaginary compo­
nent is ignored, with these inputs, the activation function is equivalent to a cosine
summation function with {-1,+1} inputs mapped {I,D} (Durbin & Rumelhart,
1989). In the remainder of this paper the terms product unit (PU) and cos{ine)
unit will be used interchangeably as all the problems examined have Boolean inputs.

2 Learning with Product Units

As the basic mechanism of a PU is multiplicative instead of additive, one would
expect that standard neural network training methods and procedures cannot be
directly applied when training these networks. This is indeed the case. If a neural
network simulation environment is available the basic functionality of a PU can be
obtained by simply adding the cos function cos(1(" * input) to the existing list of
transfer functions. This assumes that Boolean mappings are being implemented
and the appropriate {-1,+1} - {I,D} mapping has been performed on the input
vectors. However, if we then attempt to train a network on on the parity-6 problem
shown in (Durbin & Rumelhart, 1989), it is found that the standard backpropa­
gat ion (BP) algorithm simply does not work. We have found two main reasons for
this.

The first is weight initialization. A typical first step in the backpropagation proce­
dure is to initialize all weights to small random values. The main reason for this
is to use the dynamic range of the sigmoid function and it's derivative. However,
the dynamic range of a PU is unlimited. Initializing the weights to small random

Learning with Product Units 539

values results in an input to the unit where the derivative is small. So apart from
choosing small weights centered around ml" with n = ±1, ±2, ... this is the worst
possible choice. In our simulations weights were initialized randomly in the range
[-2,2]. In fact, learning seems insensitive to the size of the weights, as long as they
are large enough.

The second problem is local minima. Previous reports have mentioned this prob­
lem, (Lapedes & Farber, 1987) commented that "using sin's often leads to nu­
merical problems, and nonglobal minima, whereas sigmoids seemed to avoid such
problems". This comment summarizes our experience of training with PUs. For
small problems (less than 3 inputs) backpropagation provides satisfactory training.
However, when the number of inputs are increased beyond this number, even with
th: .weight initialization in the correct range, training usually ends up in a local
mInIma.

3 Training Algorithms

With these aspects in mind, the following training algorithms were evaluated: online
and batch versions of Backpropagation (BP), Simulated Annealing (SA), a Random
Search Algorithm (RSA) and combinations of these algorithms.

BP was used as a benchmark and for use in combination with the other algorithms.
The Delta-Bar-Delta learning rate adaptation rule (Jacobs, 1988) was used along
with the batch version of BP to accelerate convergence, with the parameters were
set to 0 = 0.35, K, = 0.05 and ¢ = 0.90. RSA is a global search method (i.e.
the whole weight space is explored during training). Weights are randomly chosen
from a predefined distribution, and replaced if this results in an error decrease. SA
(Kirkpatrick et aI., 1983) is a standard optimization method. The operation of SA
is similar to RSA, with the difference that with a decreasing probability solutions
are accepted which increase the training error. The combination of algorithms were
chosen (BP & SA, BP & RSA) to combine the benefits of global and local search.
Used in this manner, BP is used to find the local minima. If the training error at
the minima is sufficiently low, training is terminated. Otherwise, the global method
initializes the weights to another position in weight space from which local training
can continue.

The BP-RSA combination requires further explanation. Several BP-(R)SA combi­
nations were evaluated, but best performance was obtained using a fixed number of
iterations of BP (in this case 120) along with one initial iteration of RSA. In this
manner BP is used to move to the local minima, and if the training error is still
above the desired level the RSA algorithm generates a new set of random weights
from which BP can start again.

The algorithms were evaluated on two problems, the parity problem and learning all
logical functions of 2 and 3 inputs. The infamous parity problem is (for the product
unit at least) an appropriate task. As illustrated by (Durbin & Rumelhart, 1989),
this problem can be solved by one product unit. The question is whether the
training algorithms can find a solution. The target values are {-1, + 1}, and the
output is taken to be correct if it has the correct sign. The simulation results are
shown in Table 1. It should be noted that one epoch of both SA and RSA involves

540 Laurens Leerink, C. Lee Giles, Bill G. Home, Marwan A. Jahri

relaxing the network across the training set for every weight, so in computational
terms their nepoeh values should be multiplied by a factor of (N + 1).

Parity Online BP Batch BP SA RSA
N neonv nepoeh n eonv nepoeh neonv nepoeh neon v nepoeh

6 10 30.4 7 34 10 12.6 10 15.2
8 8 101.3 2 700 10 52.8 10 45.4
10 6 203.3 0 - 10 99.9 10 74.1

Table 1: The parity N problem: The table shows neon v the number of runs out of
10 that have converged and nepoeh' the average number of training epochs required
when training converged.

For the parity problem it is clear that local learning alone does not provide good
convergence. For this problem, global search algorithms have the following advan­
tages: (1) The search space is bounded (all weights are restricted to [-2, +2]) (2)
The dimension of search space is low (maximum of 11 weights for the problems
examined). (3) The fraction of the weight space which satisfies the parity problem
relative to the total bounded weight space is high.

In a second set of simulations, one product unit was trained to calculate all 2(2N)

logical functions of the N input variables. Unfortunately, this is only practical for
N E {2,3} . For N = 2 there are only 16 functions, and a product unit has no
problem learning all these functions rapidly with all four training algorithms. In
comparison a single summation unit can learn 14 (not the XOR & XNOR functions).
For N =3, a product unit is able to implement 208 of the 256 functions, while a single
summation unit could only implement 104. The simulation results are displayed in
Table 2.

Online BP Batch BP BP-RSA

Table 2: Learning all logical functions of 3 inputs: The rows display nlogie , the
average number of logical functions implemented by a product unit and nepoeh, the
number of epochs required for convergence. Ten simulations were performed for
each of the 256 logical functions , each for a maximum of 1,000 iterations.

4 Constructive Learning with Product Units

Selecting the optimal network architecture for a specific application is a nontrivial
and time-consuming task, and several algorithms have been proposed to automate
this process. These include pruning methods and growing algorithms. In this section
a simple method is proposed for adding PUs to the hidden layer of a three layer
network. The output layer contains a single sigmoidal unit .

Several constructive algorithms proceed by freezing a subset of the weights and
limiting training to the newly added units. As mentioned earlier, for PUs a global

Learning with Product Units 541

300
Tiling AI orithm ~

Upstart AI orithm I-t--<
81M using Pr Units >S-t

250

i!:
0 200
~ c
.!;
<II
C
e 150 ::l
CI)
c

'15
~

D
E 100 ::l
Z

50

200 400 600 800 1000 1200
Number of patterns (2"N)

Figure 1: The number of units required for learning the random mapping problems
by the 'Tiling', 'Upstart' and SIM algorithms.

search is required to solve the local-minima problems. Freezing a subset of the
weights restricts the new solution to an affine subset of the existing weight space,
often resulting in non-minimal networks (Ash, 1989). For this reason a simple
incremental method (SIM) was implemented which retains the global search for all
weights during the whole training process. The method used in our simulations is
as follows:

• Train a network using the BP-RSA combination on a network with a spec­
ified minimum number of hidden PUs.

• If there is no convergence within a specified number of epochs, add a PU to
the network. Reinitialize weights and continue training with the BP-RSA
combination .

• Repeat process until a solution is found or the network has grown a prede­
termined maximum size.

The method of (Ash , 1989) was also evaluated, where neurons with small weights
were added to a network according to certain criteria. The SIM performed better,
possibly because of the global search performed by the RSA step.

The 'Upstart' (Frean, 1990) and 'Tiling' (Mezard & Nadal, 1989) constructive
algorithms were chosen as benchmarks. A constructive PU network was trained
on two problems described in these papers, namely the parity problem and the
random mapping problem. In (Frean, 1990) it was reported that the Upstart

542 Laurens Leerink, C. Lee Giles, Bill G. Home, Marwan A. Jabri

algorithm required N units for all parity N problems, and 1,000 training epochs
were sufficient for all values of N except N = 10, which required 10,000. As seen
earlier, one PU is able to perform any parity function, and SIM required an an
average of 74.1 iterations for N = 6,8,10.

The random mapping problem is defined by assigning each of the 2N patterns its
target { -1, + I} with 50% probability. This is a difficult problem, due to the absence
of correlations and structure in the input. As in (Frean, 1990; Mezard & Nadal,
1989) the average of 25 runs were performed, each on a different training set. The
number of units required by SIM is plotted in Figure 1. The values for the Tiling
and Upstart algorithms are approximate and were obtained through inspection from
a similar graph in (Frean, 1990).

5 U sing Cosine Candidate Units in Cascade Correlation

Initially we wanted to compare the performance of SIM with the well-known
'cascade-correlation' (CC) algorithm of (Fahlman & Lebiere, 1990). However, the
network architectures differ and a direct comparison between the number of units in
the respective architectures does not reflect the efficiency of the algorithms. Instead,
it was decided to integrate PUs into the CC system as candidate units.

For these simulations a public domain version of CC was used (White, 1993) which
supports four different candidate types; the asymmetric sigmoid, symmetric sig­
moid, variable sigmoid and gaussian units. Facilities exist for either constructing
homogeneous networks by selecting one unit type, or training with a pool of differ­
ent units allowing the construction of hybrid networks. It was thus relatively simple
to add PU candidate units to the system. Table 3 displays the results when CC was
trained on the random logic problem using three types of homogeneous candidate
units.

N CC Sigmoid CC Gauss CC PU
nunih nepOCh6 nunih nepoch, nunih n epoch6

7 6.6 924.5 6.7 642.6 5.7 493.8
8 12.1 1630.9 11.5 1128.2 9.9 833.8
9 20.5 2738.3 18.4 1831.1 16.4 1481.8
10 32.9 4410.9 30.2 2967.6 26.6 2590.8

Table 3: Learning random logic functions of N inputs: The table shows nunih'

the average number of units required and nepoch6' the average number of training
epochs required for convergence of CC using sigmoidal, Gaussian and PU candidate
units . Figures are based on 25 simulations.

In a separate experiment the performance of hybrid networks were re-evaluated on
the same random logic problem. To enable a fair competition between candidate
units of different types, the simulations were run with 40 candidate units, 8 of each
type. The simulations were evaluated on 25 trails for each of the random mapping
problems (7,8,9 and 10 inputs, a total of 1920 input vectors). In total 1460 hidden
units were allocated, and in all cases PU candidate units were chosen above units
of the 4 other types during the competitive stage. During this comparison all

Learning with Product Units 543

parameters were set to default values, i.e. the weights of the PU candidate units
were random numbers initialized in the range of [-1, +1]. As discussed earlier, this
puts the PUs at a slight disadvantage as their optimum range is [-2, +2].

6 Discussion

The BP-RSA combination is in effect equivalent to the 'local optimization with
random restarts' process discussed by (Karmarkar & Karp, 1982), where the local
optimization is this case is performed by the BP algorithm. They reported that
for certain problems where the error surface was 'exceedingly mountainous', mul­
tiple random-start local optimization outperformed more sophisticated methods.
We hypothesize that adding PUs to a network makes the error surface sufficiently
mountainous so that a global search is required.

As expected, the higher separating capacity of the PU enables the construction of
networks with less neurons than those produced by the Tiling and Upstart algo­
rithms. The fact that SIM works this well is mainly a result of the error surface; the
surface is so irregular that even training a network of fixed architecture is best done
by reinitializing the weights if convergence does not occur within certain bounds.
This again is in accordance with the results of (Karmarkar & Karp, 1982) discussed
above.

When used in CC we hypothesize that there are three main reasons for the choice
of PUs above any of the other types during the competitive learning phase. Firstly,
the higher capacity (in a information capacity sense) of the PUs allows a better
correlation with the error signal. Secondly, having N competing candidate units is
equivalent to selecting the best of N random restarts, and performs the required
global search. Thirdly, although the error surface of networks with PUs contains
more local minima than when using standard transfer functions, the surface is locally
smooth. This allows effective use of higher-order error derivatives, resulting in fast
convergence by the quickprop algorithm.

In (Dawson & Schopflocher, 1992) it was shown that networks with Gaussian units
train faster and require less units than networks with standard sigmoidal units.
This is supported by our results shown in Table 3. However, for the problem
examined, PUs outperform Gaussian units by approximately the same margin as
Gaussian units outperform sigmoidal units. It should also be noted that these
problems where not chosen for their suitability for PUs. In fact, if the problems are
symmetric/regular the difference in performance is expected to increase.

7 Conclusion

Of the learning algorithms examined BP provides the fastest training, but is prone
to nonglobal minima. On the other hand, global search methods are impractical
for larger networks. For the problems examined, a combination of local and global
search methods were found to perform best. Given a network containing PUs, there
are some atypical heuristics that can be used: (a) correct weight initialization (b)
reinitialization of the weights if convergence is not rapidly reached. In addition,
the representational power of PUs have enabled us to solve standard problems

544 lAurens Leerink, C. Lee Giles, Bill G. Home, Marwan A. labri

using significantly smaller networks than previously reported, using a very simple
constructive method. When implemented in the CC architecture, for the problems
examined PUs resulted in smaller networks which trained faster than other units.
When included in a pool of competing candidate units, simulations showed that in
all cases PU candidate units were preferred over candidate units of the other four
types.

References

Ash, T. (1989) . Dynamic node creation in backpropagation networks. Connection
Science, 1 (4), 365-375.

Cover, T. (1965) . Geometrical and statistical properties of systems of linear inequal­
ities with applications in pattern recognition . IEEE Transactions on Electronic
Computers, 14, 326-334.

Dawson, M. & Schopflocher, D. (1992) . Modifying the generalized delta rule to train
networks of nonmonotonic processors for pattern classification. Connection
Science, 4, 19-31.

Durbin, R. & Rumelhart, D. (1989). Product units: A computationally power­
ful and biologically plausible extension to backpropagation networks. Neural
Computation, 1, 133- 142.

Fahlman, S. & Lebiere, C. (1990) . The cascade-correlation learning architecture.
In Touretzky, D. (Ed.), Advances in Neural Information Processing Systems,
volume 2, (pp. 524-532)., San Mateo. (Denver 1989), Morgan Kaufmann.

Frean, M. (1990). The upstart algorithm: A method for constructing and training
feedforward neural networks. Neural Computation, 2, 198-209.

Giles, C. & Maxwell, T . (1987). Learning, invariance, and generalization in high­
order neural networks. Applied Optics, 26(23),4972-4978 .

Jacobs, R. (1988). Increased rates of convergence through learning rate adaptation.
Neural Networks, 1, 295-307.

Karmarkar , N. & Karp, R . (1982). The differencing method of set partitioning.
Technical Report UCB/CSD 82/113, Computer Science Division, University of
California, Berkeley, California.

Kirkpatrick, S., Jr., C. G ., , & Vecchi, M. (1983) . Optimization by simulated
annealing. Science, 220. Reprinted in (?) .

Lapedes, A. & Farber, R. (1987) . Nonlinear signal processing using neural net­
works: Prediction and system modelling. Technical Report LA-UR-87-2662,
Los Alamos National Laboratory, Los Alamos, NM.

Mezard, M. & Nadal, J.-P. (1989). Learning in feedforward layered networks: The
tiling algorithm. Journal of Physics A, 22, 2191-2204.

Redding, N., Kowalczyk, A., & Downs, T . (1993). A constructive higher order
network algorithm that is polynomial-time. Neural Networks, 6,997.

White, M. (1993). A public domain C implement ion of the Cascade Correlation al­
gorithm. Department of Computer Science, Carnegie Mellon University, Pitts­
burgh , PA.

