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Abstract 

We consider the problem of decoding block coded data, using a physical 
dynamical system. We sketch out a decompression algorithm for fractal 
block codes and then show how to implement a recurrent neural 
network using physically simple but highly-nonlinear, analog circuit 
models of neurons and synapses. The nonlinear system has many fixed 
points, but we have at our disposal a procedure to choose the parameters 
in such a way that only one solution, the desired solution, is stable. As 
a partial proof of the concept, we present experimental data from a 
small system a 16-neuron analog CMOS chip fabricated in a 2m analog 
p-well process. This chip operates in the subthreshold regime and, for 
each choice of parameters, converges to a unique stable state. Each state 
exhibits a qualitatively fractal shape. 

1. INTRODUCTION 

Sometimes, a nonlinear approach is the simplest way to solve a linear problem. This is 
true when computing with physical dynamical systems whose natural operations are 
nonlinear. In such cases it may be expensive, in terms of physical complexity, to 
linearize the dynamics. For example in neural computation active ion channels have 
highly non linear input-output behaviour (see Hille 1984). Another example is 
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subthreshold CMOS VLSI technology 1. In both examples the physics that governs the 
operation of the active devices, gives rise to gain elements that have exponential transfer 
characteristics. These exponentials result in computing structures with non-linear 
dynamics. It is therefore worthwhile, from both scientific and engineering perspectives, to 
investigate the idea of analog computation by highly non-linear components. 

This paper, explores an approach for solving a specific linear problem with analog 
circuits that have nonlinear transfer functions. The computational task considered here is 
that of fractal block code decompression (see e.g. Jacquin, 1989). 

The conventional approach to decompressing fractal codes is essentially an excercise in 
solving a high-dimenional sparse linear system of equations by using a relaxation 
algorithm. The relaxation algorithm is performed by iteratively applying an affine 
transformation to a state vector. The iteration yields a sequence of state vectors that 
converges to a vector of decoded data. The approach taken in this paper is based on the 
observation that one can construct a physically-simple nonlinear dyanmical system whose 
unique stable fixed point coincides with the solution of the sparse linear system of 
equations. 

In the next section we briefly summarize the basic ideas behind fractal block coding. This 
is followed by a description of an analog circuit with physically-simple nonlinear 
neurons. We show how to set the input voltages for the network so that we can program 
the position of the stable fixed point. Finally , we present experimental results obtained 
from a test chip fabricated in a 2mm CMOS process. 

2. FRACTAL BLOCK CODING IN A NUTSHELL 

Let the N-dimensional state vector I represent a one dimensional curve sampled on N 
points. An affine transformation of this vector is simply a transformation of the form I' 
= WI+B , where W is an NxN -element matrix and B is an N-component vector. This 
transformation can be iterated to produce a sequence of vectors I(O) ... . ,I(n). The sequence 
converges to a unique final state 1* that is independent of the initial state 1(0) if the 
maximum eigenvalue A.max of the matrix W satisfies Amax < 1. The uniqueness of the final 
state implies that to transmit the state r to a receiver, we can either transmit r directly, 
or we can transmit Wand B and let the receiver perform the iteration to generate r. In 
the latter case we say that Wand B constitute an encoding of the state 1*. For this 
encoding to be useful, the amount of data needed to transmit Wand B must be less than 
the amount of data needed to transmit r This is the case when Wand B are sparse and 
parameterized and when the total number of bits needed to transmit these parameters is 
less than the total number of bits needed to transmit the uncompressed state r 
Fractal block coding is a special case of the above approach. It amounts to choosing a 

lWe consider subthreshold analog VLSI., (Mead 1989; Andreou and Boahen, 1994). A 
simple subthreshold model is ~ = I~nfet) exp(K'Vgb)( exp( -vsb) -exp( -Vdb») for 
NFETS, where 1C - 0.67 and I~ t) = 9.7 x 10-18 A. The voltage differences Vgb, 
,vsb,and Vdb are in units of the thermal voltafje, Vth= 0.025V. We use a corresponding 
expression for PFETs of the from Ids = I~pfe exp( -K'Vgb)( exp(vsb) - exp(vdb») where 
I~Pfet ) =3.8xl0-18 A. 
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blocked structure for the matrix W. This structure forces large-scale features to be mapped 
into small-scale features. The result is a steady state r that represents a curve with self 
similar (actually self affine) features. As a concrete example of such a structure, consider 
the following transformation of the state I. 

for O~ i ~ N -1 
2 

N r i = w R12i- N + bR for 2: ~ i ~ N-l 

(1) 

This transformation has two blocks. The transformation of the first N/2 components of I 
depend on the parameters W Land b L while the transformation of the second N/2 
components depend on the parameters WR, and bR . Consequently just four parameters 
completely specify this transformation. This transformation can be expressed as a single 
affine transformation as follows: 

/' 0 wL 10 bL 

I'N/2-1 wL 1 bL = N/2-1 + (2) 
/' N12 WR 1 bR N/2 

/' N-l wR I N - 1 bR 

The top and bottom halves of I I depend on the odd and even components of I 
respectively. This subsampling causes features of size I to be mapped into features of 
size 112. A subsampled copy of the state I with transformed intensities is copied into the 
top half of 1'. Similarly, a subsampled copy of the state I with transformed intensities is 
copied into the bottom half of 1'. If this transformation is iterated, the sequence of 
transformed vectors will converge provided the eigenvalues determined by WL and WR are 
all less than one (i.e. WL and WR < 1). 

Although this toy example has just four free parameters and is thus too trivial to be 
useful for actual compression applications, it does suffice to generate state vectors with 
fractal properties since at steady state, the top and bottom halves of I' differ from the 
entire curve by an affine transformation. 

In this paper we will not describe how to solve the inverse problem which consists of 
finding a parameterized affine transformation that produces a given final state T. We 
note, however, that it is a special (and simpler) case of the recurrent network training 
problem, since the problem is linear, has no hidden units and has only one fixed point. 
The reader is refered to (Pineda, 1988) or. for a least squares algorithm in the context of 
neural nets or to (Monroe and Dudbridge, 1992) for a least squares algorithm in the 
context of coding. 

3. A CMOS NEURAL NETWORK MODEL 
Now that we have described the salient aspects of the fractal decompression problem, we 
tum to the problem of implementing an analog neural network whose nonlinear dynamics 
converges to the same fixed point as the linear system. Nonlinearity arises because we 



798 Fernando Pineda, Andreas G. Andreou 

make no special effort to linearize the gain elements (controlled conductances and 
transconductances) of the implementation medium. In this section we first describe a 
simple neuron. Then we analyze the dynamics of a network composed of such neurons. 
Finally we describe how to program the fixed point in the actual physical network. 

3.1 The analog Neuron 

\\(~t) woulgll) like to create a neuron model that calculates the transformation 
I = al + b . Consider the circuit shown in figure 1. This has three functional 
sections which compute by adding and subtracting currents and. where voltages are "log" 
coded; this is the essence of the "current-mode" aproach in circuit design (Andreou et.al. 
1994). The first section, receives an input voltage from a presynaptic neuron, converts it 
into a current I(in), and multiplies it by a weight a. The second section adds and subtracts 
the bias current b. The last section converts the output current into an output voltage and 
transmits it to the next neuron in the network. Since the transistors have exponential 
transfer characteristics, this voltage is logarithmically coded. 

The parameters a and b are set by external voltages. Theyarameter a, is set by a single 
external voltage Va while the bias parameter b = br -) - b( + is set by two external voltages 
vb(+) and vbH . Two voltages are used for b to account for both positive and negative 
bIas values since b( -»0 and b( + »0 . 
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Figure 1. The analog neuron has three sections. 

To derive the dynamical equations of the neuron, it is neccesary to add up all the currents 
and invoke Kirchoffs current law, which requires that 

lout ) _alin ) +b(+) -b(-) = Ic . (3) 

If we now assume a simple subthreshold model for the behavior of the FET's and PFETs 
in the neuron, we can obtain the following expression for the current across the 
capacitor: 

Q dlout) 
--- =1 

lout) dt c 
(4) 
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where Q = Cl1cVth determines the characteristic time scale of the neuron2. It immediately 
follows from the last two expressions that the dynamics of a single neuron is determined 
by the equation 

dJCout) 
Q = _/(out) (I(out) _ al(in) _ b). 

dt 
(5) 

Where b = M-) - M+) . This equation appears to have a quadratic nonlinearity on the r.h.s. 
In fact, the noninearity is even more complicated since, the cooeficients a, M +) and b( -) 
are not constants, but depend on I(out) (through v(out). Application of the simple 
subthreshold model, results in a multiplier gain that is a function of v( out) (and hence 
tout)) as well as Va . It is given by 

a( va' v<out») = 2exp(- v~ {sinh( v~ - va) -sinh( v~ _v(out» J 
Similarly, the currents b(+) and bH are given by 

and 

b( +) = I~fpet) exp( KV b(+) )( 1- exp( _v(out») 

b(-) = I~nfet) exp(KVb(_) )(I_exp(_v(Out») 

respectively, where va == vdd - va . 

3.2 Network dynamics and Stability considerations 

(6) 

(7.a) 

(7.b) 

With these results we conclude that, a network of neurons, in which each neuron receives 
input from only one other neuron, would have a dynamical equation of the form 

d[' ( ) Q_! = -1·(/· - a· I· 1 ·(·) - b·) dt !! ! I J! I 
(8) 

where the connectivity of the network is determined by the function j( i) . The fixed points 
of these highly nonlinear equations occur when the r.h.s. of (8) vanishes. This can only 
happen if either Ii = Oor if (Ii - aJj(i) - bi ) = 0 for each i. The local stability of each of 
these fixed points follows by examining the eigenvalues (A.) of the corresponding 
jacobian. The expression for the jacobian at a general point I is 

J'k = dFi = -Q[(/. - a.J.(·) - b·)8·k + [,(1- a~1 .(.) - b~)8'k - a.J.8 '(')k] (9) 
! dlk ! I J I I I I I J I I I I I J I . 

Where the partial derivatives, a'i and b'j are with respect to Ii. At a fixed point the 
jacobian takes the form 

{
bi8ik if Ii = 0 

Jik = Q -/i [ (1- a[lj(i) - b[)8ik - ai8j(i)k] if (Ii - ailj(i) - bi ) = O· (10) 

2C represents the total gate capacitance from all the transistors connected to the horizontal 
line of the neuron. For the 2J..l analog proc~s~, the gate capacitance is aprroximately 0.5 
fF/J..l2 so a 10J..l x 10J..l FET has a charactenstlc charge of Q =2.959 x 10- 4 Coulombs at 
room temperature. 
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There are two cases of interest. The first case is when no neurons have zero output. This 
is the "desired solution." In this case, the jacobian specializes to 

Jik =-QIi[(1-aiIj(i) -b[)Oik -aiOj(i)k]' (11) 

Where, from (6) and (7), it can be shown that the partial derivatives, a'i and b'i are both 
non-positive. It immediately follows, from Gerschgorin's theorem, that a sufficient 
condition that the eigenvalues be negative and that the fixed point be stable, is that 
lail <l. The second case is when at least one of the neurons has zero output. We call these 
fixed points the "spurious solutions." In this case some of the eigenvalues are very easy 
to calculate because terms of the form (bi -).) ,where Ii = 0, can be factored from the 
expression for det(J-.?J). Thus some eigenvalues can be made positive by making some of 
the bi positive. Accordingly, if all the bi satisfy bi >0 , some of the eigenvalues will 
necessarily be positive and the spurious solutions will be unstable. To summarize the 
above discussion, we have shown that by choosing bi >0 and lail <1 for all i, we can 
make the desired fixed point stable and the spurious fixed points unstable. Note that a 
sufficient condition for bi >0 is if b~ +) = O. 

It remains to show that the system must converge to the desired fixed point, i.e. that the 
system cannot oscillate or wander chaotically. To do this we consider the connectivity of 
the network we implemented in our test chip. This is shown schematically in figure 2. 
The first eight neurons receive input from the odd numbered neurons while the second 
eight neurons receive input from the even numbered neurons. The neurons on the left­
hand side all share the weight, WL, while the neurons on the right share the weight WR. 
By tracing the connections, we find that there are two independent loops of neurons: 
loop #1 = {0,8,12,14,IS,7,3,1} and loop #2 = {2,9,4,1O,13,6,1l,S}. 

Figure 2. The connection topology for the test chip is determined by 
the matrix of equation (1). The neurons are labeled 0-15. 

By inspecting each loop, we see that it passes through either the left or right hand range 
an even number of times. Hence, if there are any inhibitory weights in a loop, there 
must be an even number of them. This is the "even loop criterion", and it suffices to 
prove that the network is globally asymptotically stable, (Hirsch, 1987). 

3.3. Programming the fixed point 
The nonlinear circuit of the previous section converges to a fixed point which is the 
solution of the following system of transcendental equations 

* * * (-) * -Ii -ai(li ,va)Ij(i) -bi (Ii ,vb<-»-O (12) 
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where the coefficients ai and bi are given by equations (6) and (7b) respectively. 
Similarly, the iterated affine transformations converge to the solution of the following 
linear equations 

* * Ii - A/j(j) - B j = 0 (13) 

where the coefficients {Ai ,Bi } and the connectionsj(i) are obtained by solving the 
approximate inverse problem with the additional constraints that bi >0 and lail <1 for all 
i,. The requirement that the fixed points of the two systems be identical results in the 
conditions 

* Aj = aj(lj ,va) 

B - b(-)(I* ) 
j - j j ,V b(-) 

(14) 

These equations can be solved for the required input voltages Va, and vb(-). Thus we are 
able to construct a nonlinear dynamical system that converges to the same fixed point as a 
linear system. For this programming method to work, of course, the subthreshold model 
we have used to characterize the network must accurately model the physical properties of 
the neural network. 

4. PRELIMINARY RESULTS 
As a first step towards realizing a working system, we fabricated a Tiny chip containing 
16 neurons arranged in two groups of eight. The topology is the same as shown in figure 
2. The neurons are similar to those in figure 1 except that the bias term in each block of 
8 neurons has the form b = kb( -) + (7 - k )b( -) , where O::;k::;7 is the label of a particular 
neuron within a block. This form increases the complexity of the neurons, but also 
allows us to represent ramps more easily (see figure 3). 

We fabricated the chip through MOSIS in a 2~m p-well CMOS process. A switching 
layer allows us to change the connection topology at run-time. One of the four possible 
configurations corresponds to the toplogy of figure 2. Six external voltages 
{Va ,V H ' Vi)H ' Va ,VbH ' Vi)H }parameterize the fixed points of the network. These are 
confrolfM blpote~tioIdeters~ There is multiplexing circuitry included on the chip that 
selects which neuron output is to be amplified by a sense-amp and routed off-chip. The 
neurons can be addressed individually by a 4-bit neuron address. The addressing and 
analog-to-digital conversion is performed by a Motorolla 68HCIIAI microprocessor. 

We have operated the chip at 5volts and at 2.6 volts. Figure 3. shows the scanned steady 
state output of one of the test chips for a particular choice of input parameters with v dd =5 
volts. The curve in figure 3. exhibits the qualitatively self-similar features of a recursively 
generated object. We are able to see three generations of a ramp. At 2.5 volts we see a 
very similar curve. We find that the chip draws 16.3 ~ at 2.5 volts. This corresponds to 
a steady state power dissipation of 411lW. Simulations indicate that the chip is operating 
in the subthreshold regime when Vdd = 2.5 volts. Simulations also indicate that the chip 
settles in less than one millisecond. We are unable to perform quantitiative measurements 
with the first chip because of several layout errors. On the other hand, we have 
experimentally verified that the network is indeed stable and that network produces 
qualitative fractals. We explored the parameter space informatlly. At no time did we 
encounter anything but the desired solutions. 
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Figure 3 D/A output for chip #3 for a particular set of input voltages. 

We have already fabricated a larger design without the layout problems of the prototype. 
This second design has 32 pixeles and a richer set of permitted topologies. We expect to 
make quantitative measurements with this second design. In particular we hope to use it 
to decompress an actual block code. 
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