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Abstract 

We prove the convergence of an actor/critic algorithm that is equiv­
alent to Q-Iearning by construction. Its equivalence is achieved by 
encoding Q-values within the policy and value function of the ac­
tor and critic. The resultant actor/critic algorithm is novel in two 
ways: it updates the critic only when the most probable action is 
executed from any given state, and it rewards the actor using cri­
teria that depend on the relative probability of the action that was 
executed. 

1 INTRODUCTION 

In actor/critic learning systems, the actor implements a stochastic policy that maps 
states to action probability vectors, and the critic attempts to estimate the value of 
each state in order to provide more useful reinforcement feedback to the actor. The 
result is two interacting adaptive processes: the actor adapts to the critic, while the 
critic adapts to the actor. 

The foundations of actor/critic learning systems date back at least to Samuel's 
checker program in the late 1950s (Samuel,1963). Examples of actor/critic systems 
include Barto, Sutton, & Anderson's (1983) ASE/ ACE architecture and Sutton's 
(1990) Dyna-PI architecture. Sutton (1988) notes that the critic in these systems 
performs temporal credit assignment using what he calls temporal difference (TD) 
methods. Barto, Sutton, & Watkins (1990) note a relationship between actor/critic 
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architectures and a dynamic programming (DP) algorithm known as policy iteration. 

Although DP is a collection of general methods for solving Markov decision pro­
cesses (MDPs), these algorithms are computationally infeasible for problems with 
very large state sets. Indeed, classical DP algorithms require multiple complete 
sweeps of the entire state set. However, progress has been made recently in devel­
oping asynchronous, incremental versions of DP that can be run online concurrently 
with control (Watkins, 1989; Barto et ai, 1993). Most of the theoretical results for 
incremental DP have been for algorithms based on a DP algorithm known as value 
iteration. Examples include Watkins' (1989) Q-Iearning algorithm (motivated by 
a desire for on-line learning), and Bertsekas & Tsitsiklis' (1989) results on asyn­
chronous DP (motivated by a desire for parallel implementations). Convergence 
proofs for incremental algorithms based on policy iteration (such as actor/critic 
algorithms) have been slower in coming. 

Williams & Baird (1993) provide a valuable analysis of the convergence of certain 
actor/critic learning systems that use deterministic policies. They assume that a 
model of the MDP (including all the transition probabilities and expected rewards) 
is available, allowing the use of operations that look ahead to all possible next 
states. When a model is not available for the evaluation of alternative actions, one 
must resort to other methods for exploration, such as the use of stochastic policies. 
We prove convergence for an actor/critic algorithm that uses stochastic policies and 
does not require a model of the MDP. 

The key idea behind our proof is to construct an actor/critic algorithm that is 
equivalent to Q-Iearning. It achieves this equivalence by encoding Q-values within 
the policy and value function of the actor and critic. By illustrating the way Q­
learning appears as an actor/critic algorithm, the construction sheds light on two 
significant differences between Q-Iearning and traditional actor/critic algorithms. 
Traditionally, the critic attempts to provide feedback to the actor by estimating 
V1I', the value function corresponding to the current policy'll". In our construction, 
instead of estimating ~, the critic directly estimates the optimal value function 
V"'. In practice, this means that the value function estimate V is updated only 
when the most probable action is executed from any given state. In addition, our 
actor is provided with more discriminating feedback, based not only on the TD 
error, but also on the relative probability of the action that was executed. By 
adding these modifications, we can show that this algorithm behaves exactly like 
Q-Iearning constrained by a particular exploration strategy. Since a number of 
proofs of the convergence of Q-Iearning already exist (Tsitsiklis, 1994; Jaakkola et 
ai, 1993; Watkins & Dayan, 1992), the fact that this algorithm behaves exactly 
like Q-Iearning implies that it too converges to the optimal value function with 
probability one. 

2 MARKOV DECISION PROCESSES 

Actor/critic and Q-Iearning algorithms are usually studied within the Markov de­
cision process framework. In a finite MDP, at each discrete time step, an agent 
observes the state :z: from a finite set X, and selects an action a from a finite set 
Ax by using a stochastic policy'll" that assigns a probability to each action in Ax. 
The agent receives a reward with expected value R(:z:, a), and the state at the next 
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time step is y with probability pll(:z:,y). For any policy 7£' and :z: E X, let V""(:Z:) 
denote the ezpected infinite-horizon discounted return from :z: given that the agent 
uses policy 7£'. Letting rt denote the reward at time t, this is defined as: 

V""(:z:) = E7r [L:~o,trtl:z:o = :z:], (1) 

where :Z:o is the initial state, 0 :::; , < 1 is a factor used to discount future rewards, 
and E7r is the expectation assuming the agent always uses policy 7£'. It is usual to call 
V7r (:z:) the value of:z: under 7£'. The function V"" is the value function corresponding 
to 7£'. The objective is to find an optimal policy, i.e., a policy,7£'*, that maximizes 
the value of each state :z: defined by (1). The unique optimal value function, V*, is 
the value function corresponding to any optimal policy. Additional details on this 
and other types of MOPs can be found in many references. 

3 ACTOR/CRITIC ALGORITHMS 

A generic actor/critic algorithm is as follows: 

1. Initialize the stochastic policy and the value function estimate. 

2. From the current state :z:, execute action a randomly according to the cur­
rent policy. Note the next state y, the reward r, and the TO error 

e = [r + ,V(y)] - V(:z:), 

where 0 :::; , < 1 is the discount factor. 

3. Update the actor by adjusting the action probabilities for state :z: using the 
TO error. If e > 0, action a performed relatively well and its probability 
should be increased. If e < 0, action a performed relatively poorly and its 
probability should be decreased. 

4. Update the critic by adjusting the estimated value of state :z: using the TO 
error: 

V(:z:) -- V(:z:) + a e 

where a is the learning rate. 

5. :z: -- y. Go to step 2. 

There are a variety of implementations of this generic algorithm in the literature. 
They differ in the exact details of how the policy is stored and updated. Barto 
et al (1990) and Lin (1993) store the action probabilities indirectly using param­
eters w(:z:, a) that need not be positive, and need not sum to one. Increasing (or 
decreasing) the probability of action a in state :z: is accomplished by increasing (or 
decreasing) the value of the parameter w(:z:, a). Sutton (1990) modifies the generic 
algorithm so that these parameters can be interpreted as action value estimates. 
He redefines e in step 2 as follows: 

e = [r + ,V(y)] - w(:z:, a). 

For this reason, the Oyna-PI architecture (Sutton, 1990) and the modified ac­
tor/critic algorithm we present below both reward less probable actions more readily 
because of their lower estimated values. 



404 Robert Crites, Andrew G. Barto 

Barto et al (1990) select actions by adding exponentially distributed random num­
bers to each parameter w(:z:, a) for the current state, and then executing the action 
with the maximum sum. Sutton (1990) and Lin (1993) convert the parameters 
w(:z:, a) into action probabilities using the Boltzmann distribution, where given a 
temperature T, the probability of selecting action i in state :z: is 

ew(x,i)/T 

'" ew(x,a)/T' 
L.JaEA .. 

In spite of the empirical success of these algorithms, their convergence has never 
been proven. 

4 Q-LEARNING 

Rather than learning the values of states, the Q-Iearning algorithm learns the val­
ues of state/action pairs. Q(:z:, a) is the expected discounted return obtained by 
performing action a in state :z: and performing optimally thereafter. Once the Q 
function has been learned, an optimal action in state :z: is any action that maximizes 
Q(:z:, .). Whenever an action a is executed from state :z:, the Q-value estimate for 
that state/action pair is updated as follows: 

Q(:z:, a) +- Q(:z:, a) + O!xa(n) [r + "y maxbEAlI Q(y, b) - Q(:z:, a)), 

where O!xa (n) is the non-negative learning rate used the nth time action a is executed 
from state :z:. Q-Learning does not specify an exploration mechanism, but requires 
that all actions be tried infinitely often from all states. In actor/critic learning 
systems, exploration is fully determined by the action probabilities of the actor. 

5 A MODIFIED ACTOR/CRITIC ALGORITHM 

For each value v E !R, the modified actor/critic algorithm presented below uses an 
invertible function, H.", that assigns a real number to each action probability ratio: 

H1J : (0,00) -+ !R. 

Each H." must be a continuous, strictly increasing function such that H.,,(l) = v, 
and 

HH .. (Z2)(i;) = H",(Zl) for all Zl,Z2 > o. 

One example of such a class of functions is H.,,(z) = T In(z) + v, v E !R, for some 
positive T. This class of functions corresponds to Boltzmann exploration in Q­
learning. Thus, a kind of simulated annealing can be accomplished in the modified 
actor/critic algorithm (as is often done in Q-Iearning) by gradually lowering the 
"temperature" T and appropriately renormalizing the action probabilities. It is 
also possible to restrict the range of H." if bounds on the possible values for a given 
MDP are known a priori. 

For a state :z:, let Pa be the probability of action a, let Pmax be the probability of 
the most probable action, amax , and let Za = ~. 
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The modified actor/critic algorithm is as follows: 

1. Initialize the stochastic poliCj and the value function estimate. 

2. From the current state :z:, execute an action randomly according to the 
current policy. Call it action i. Note the next state y and the immediate 
reward r, and let 

e = [r + -yV(y)] - Hy(X) (Zi). 

3. Increase the probability of action i if e > 0, and decrease its probability if 
e < O. The precise probability update is as follows. First calculate 

zt = H~tX)[HY(x)(Zi) + aXi(n) e]. 

Then determine the new action probabilities by dividing by normalization 
factor N = zt + E#i Zj, as follows: 

a:~ a:' 
Pi +-:W, and Pj +- =jt, j =P i. 

4. Update V(:z:) only if i = UomIlX' Since the action probabilities are updated 
after every action, the most probable action may be different before and 
after the update. If i = amllx both before and after step 3 above, then 
update the value function estimate as follows: 

V(:z:) +- V(:z:) + aXi(n) e 

Otherwise, if i = UomIlX before or after step 3: 

V(:z:) +- HY(x)(Npk), 

where action Ie is the most probable action after step 3. 

5. :z: +- y. Go to step 2. 

6 CONVERGENCE OF THE MODIFIED ALGORITHM 

Theorem: The modified actor/critic algorithm given above converge6 to the opti­
mal value function V· with probability one if: 

1. The 6tate and action 6et6 are finite. 

2. E:=o axlI(n) = 00 and E:=o a!lI(n) < 00. 

Space does not permit us to supply the complete proof, which follows this outline: 

1. The modified actor/critic algorithm behaves exactly the same as a Q­
learning algorithm constrained by a particular exploration strategy. 

2. Q-Iearning converges to V· with probability one, given the conditions above 
(Tsitsiklis, 1993; Jaakkola et aI, 1993; Watkins & Dayan, 1992). 

3. Therefore, the modified actor/critic algorithm also converges to V· with 
probability one. 
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The commutative diagram below illustrates how the modified actor/critic algorithm 
behaves exactly like Q-Iearning constrained by a particular exploration strategy. 
The function H recovers Q-values from the policy ?r and value function V. H- 1 

recovers (?r, V) from the Q-values, thus determining an exploration strategy. Given 
the ability to move back and forth between (?r, V) and Q, we can determine how to 
change (?r, V) by converting to Q, determining updated Q-values, and then convert­
ing back to obtain an updated (?r, V). The modified actor/critic algorithm simply 
collapses this process into one step, bypassing the explicit use of Q-values. 

( VA) Modified Actor/Critic ( VA) 
7r -------.. 7r , t , t+1 

H H-l 

A A 

(Jt ------------Q---L-ea-r-ru-·n-g----------~~ (Jt+1 

Following the diagram above, (?r, V) can be converted to Q-values as follows: 

Going the other direction, Q-values can be converted to (?r, V) as follows: 

and 

The only Q-value that should change at time t is the one corresponding to the 
state/action pair that was visited at time tj call it Q(:z:, i). In order to prove the con­
vergence theorem, we must verify that after an iteration ofthe modified actor/critic 
algorithm, its encoded Q-values match the values produced by Q-Iearning: 

Qt+1(:Z:, a) = Qt(:Z:, i) + Qx.(n) [r + "y max Qt(Y, b) - Qt(:Z:, i)], a = i. (2) 
bEAli 

(3) 

In verifying this, it is necessary to consider the four cases where Q(:z:, i) is, or is not, 
the maximum Q-value for state :z: at times t and t + 1. Only enough space exists to 
present a detailed verification of one case. 

Case 1: Qt(:Z:, i) = ma:z: Qt(:Z:,·) and Qt+l(:Z:, i) = ma:z: Qt+l(:Z:, .). 

In this case, Jli(t) = Pmax(t) and P.(t + 1) = Pmax(t + 1), since Hyt(x) and Hyt+1 (x) 

are strictly increasing. Therefore Zi (t) = 1 and Zi (t + 1) = 1. Therefore, Vi ( :z:) = 
HYt (x)[1] = HYt(x)[Zi(t)] = Qt(:Z:, i), and 
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Hyt+1 (x) [Zi(t + 1)] 

Hyt+1 (x) [1] 

Vt+l(:C) 

Vt(:c) + O!xi(n) e 

Qt(:Z:, i) + O!xi(n) [r + "y max Qt(Y, b) - Qt(:Z:, i)]. 
bEAJI 

This establishes (2). To show that (3) holds, we have that 

Vt+l(:Z:) Vt(:c) + O!xi(n) e 

and 

Qt(:z:, i) + O!xi(n) e 

HYt(x)[Zi(t)] + O!xi(n) e 

HYt(x)[H~t~x)[HYt(x)[Zi(t)] + O!xi(n) e]] 

Hyt(x) [zt(t)] 

Hyt+1 (x) [za(t + 1)] 

H [ Pa(t + 1) ] 
Yt+1 (x) Pmax(t + 1) 

H [Za(t)/lV] f 
Yt+1(x) zt(t)/lV i a i= i 

H [Za(t)] 
Yt+1 (x) zt(t) 

za(t) 
HHfrt( .. )[zt(t)][zt(t)1 by (4) 

Hyt(x) [za(t)] by a property of H 

Qt(:Z:, a). 

The other cases can be shown similarly. 

7 CONCLUSIONS 

407 

(4) 

We have presented an actor/critic algorithm that is equivalent to Q-Iearning con­
strained by a particular exploration strategy. Like Q-Iearning, it estimates V" 
directly without a model of the underlying decision process. It uses exactly the 
same amount of storage as Q-Iearning: one location for every state/action pair. 
(For each state, IAI- 1 locations are needed to store the action probabilities, since 
they must sum to one. The remaining location can be used to store the value of 
that state.) One advantage of Q-Iearning is that its exploration is uncoupled from 
its value function estimates. In the modified actor/critic algorithm, the exploration 
strategy is more constrained. 
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It is still an open question whether other actor/critic algorithms are guaranteed 
to converge. One way to approach this question would be to investigate further 
the relationship between the modified actor/critic algorithm described here and the 
actor/critic algorithms that have been employed by others. 
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