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Abstract 

Prior constraints are imposed upon a learning problem in the form 
of distance measures. Prototypical 2-D point sets and graphs are 
learned by clustering with point matching and graph matching dis­
tance measures. The point matching distance measure is approx. 
invariant under affine transformations - translation, rotation, scale 
and shear - and permutations. It operates between noisy images 
with missing and spurious points. The graph matching distance 
measure operates on weighted graphs and is invariant under per­
mutations. Learning is formulated as an optimization problem. 
Large objectives so formulated ('" million variables) are efficiently 
minimized using a combination of optimization techniques - alge­
braic transformations, iterative projective scaling, clocked objec­
tives, and deterministic annealing. 

1 Introduction 

While few biologists today would subscribe to Locke's description of the nascent 
mind as a tabula rasa, the nature of the inherent constraints - Kant's preknowl-
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edge - that helps organize our perceptions remains much in doubt. Recently, the 
importance of such preknowledge for learning has been convincingly argued from 
a statistical framework [Geman et al., 1992]. Researchers have proposed that our 
brains may incorporate preknowledge in the form of distance measures [Shepard, 
1989]. The neural network community has begun to explore this idea via tangent 
distance [Simard et al., 1993], model learning [Williams et al., 1993] and point 
matching distances [Gold et al., 1994]. However, only the point matching distances 
have been invariant under permutations. Here we extend that work by enhancing 
both the scope and function of those distance measures, significantly expanding the 
problem domains where learning may take place. 

We learn objects consisting of noisy 2-D point-sets or noisy weighted graphs by 
clustering with point matching and graph matching distance measures. The point 
matching measure is approx. invariant under permutations and affine transforma­
tions (separately decomposed into translation, rotation, scale and shear) and oper­
ates on point-sets with missing or spurious points. The graph matching measure is 
invariant under permutations. These distance measures and others like them may be 
constructed using Bayesian inference on a probabilistic model of the visual domain. 
Such models introduce a carefully designed bias into our learning, which reduces its 
generality outside the problem domain but increases its ability to generalize within 
the problem domain. (From a statistical viewpoint, outside the problem domain it 
increases bias while within the problem domain it decreases variance). The resulting 
distance measures are similar to some of those hypothesized for cognition. 

The distance measures and learning problem (clustering) are formulated as objec­
tive functions. Fast minimization of these objectives is achieved by a combination 
of optimization techniques - algebraic transformations, iterative projective scaling, 
clocked objectives, and deterministic annealing. Combining these techniques signif­
icantly increases the size of problems which may be solved with recurrent network 
architectures [Rangarajan et al., 1994]. Even on single-cpu workstations non-linear 
objectives with a million variables can routinely be minimized. With these meth­
ods we learn prototypical examples of 2-D points set and graphs from randomly 
generated experimental data. 

2 Distance Measures in Unsupervised Learning 

2.1 An Affine Invariant Point Matching Distance Measure 

The first distance measure quantifies the degree of dissimilarity between two unla­
beled 2-D point images, irrespective of bounded affine transformations, i.e. differ­
ences in position, orientation, scale and shear. The two images may have different 
numbers of points. The measure is calculated with an objective that can be used to 
find correspondence and pose for unlabeled feature matching in vision. Given two 
sets of points {Xj} and {Yk}, one can minimize the following objective to find the 
affine transformation and permutation which best maps Y onto X : 

J K J K 

Epm(m, t,A) = L: L: mjkllXj - t - A· Ykll 2 + g(A) - a L: L: mjk 
j=lk=l j=lk=l 

with constraints: Yj Ef=l mjk ~ 1 , Yk Ef=l mjk ~ 1 , Yjk mjk 2:: O. 
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A is decomposed into scale, rotation, vertical shear and oblique shear components. 
g(A) regularizes our affine transformation - bounding the scale and shear compo­
nents. m is a fuzzy correspondence matrix which matches points in one image with 
corresponding points in the other image. The inequality constraint on m allows for 
null matches - that is a given point in one image may match to no corresponding 
point in the other image. The a term biases the objective towards matches. 

Then given two sets of points {Xj} and {Yk} the distance between them is defined 
as: 

D({Xj}, {Yk}) = min (Epm(m,t, A) I constraints on m) 
m,t,A 

This measure is an example of a more general image distance measure derived in 
[Mjolsness, 1992]: 

d(z, y) = mind(z, T(y» E [0, (0) 
T 

where T is a set of transformation parameters introduced by a visual grammar. 

Using slack variables, and following the treatment in [Peterson and Soderberg, 1989; 
Yuille and Kosowsky, 1994] we employ Lagrange multipliers and an z logz barrier 
function to enforce the constraints with the following objective: 

J K J K 

Epm(m, t, A) = L: L: mjkllXj - t - A· Ykll 2 + g(A) - a L: L: mjk 
j=lk=l j=lk=1 

1 J+1 K+1 J K+1 K J+1 

+-p L: L: mjk(logmjk - 1) + L: J.'j (L: mjk - 1) + L: lIk(L: mjk - 1) (1) 
j=1 k=l j=l k=l k=1 j=l 

In this objective we are looking for a saddle point. (1) is minimized with respect to 
m, t, and A which are the correspondence matrix, translation, and affine transform, 
and is maximized with respect to l' and 11, the Lagrange multipliers that enforce 
the row and column constraints for m. 

The above can be used to define many different distance measures, since given 
the decomposition of A it is trivial to construct measures which are invariant only 
under some subset of the transformations (such as rotation and translation) . The 
regularization and a terms may also be individually adjusted in an appropriate 
fashion for a specific problem domain. 

2.2 Weighted Graph Matching Distance Measures 

The following distance measure quantifies the degree of dissimilarity between two 
unlabeled weighted graphs. Given two graphs, represented by adjacency matrices 
Gab and gij, one can minimize the objective below to find the permutation which 
best maps G onto g: ' 

A I B J 

Egm(m) = L: L:(L: Gabmbi - L: majgji)2 
a=l i=l b=1 ;=1 
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with constraints: 'Va 2::=1 mai = 1 , 'Vi 2::=1 mai = 1 , 'Vai mai ;::: O. These 
constraints are enforced in the same fashion as in (1). An algebraic fixed-point 
transformation and self-amplification term further transform the objective to: 

A I B J 1 
Egm(m) = L L(J.'ai(L Gabmbi - z: majDji) - 2J.'~i - ,lTaimai + ~lT~i) 

a=1 i=1 b=1 j=1 
lAI A I I A 

+(j L z: mai(logmai - 1) + L lI:a(Z: mai - 1) + z: Ai(L mai - 1) (2) 
a=1 i=1 a=1 i=1 i=1 a=1 

In this objective we are also looking for a saddle point. 

A second, functionally equivalent, graph matching objective is also used III the 
clustering problem: 

A B I J 

Egm/(m) = LZ:LZ:maim bj(Gab-Dji)2 (3) 
a=lb=li=lj=l 

with constraints: 'Va 2::=1 mai = 1 , 'Vi 2::=1 mai = 1 , 'Vai mai ;::: O. 

2.3 The Clustering Objective 

The learning problem is formulated as follows: Given a set of I objects, {Xi} find 
a set of A cluster centers {Ya} and match variables {Mia} defined as 

M. _ {I if Xi is in Ya's cluster 
la - 0 otherwise, 

such that each object is in only one cluster, and the total distance of all the objects 
from their respective cluster centers is minimized. To find {Ya} and {Mia} minimize 
the cost function, 

I A 

Eeltuter(Y,M) = LLMiaD(Xi' Ya) 
i=l a=l 

with the constraint that 'Vi 2:a Mia = 1 , 'Vai Mai ;::: O. D(Xi, Ya), the distance 
function, is a measure of dissimilarity between two objects. 

The constraints on M are enforced in a manner similar to that described for the 
distance measure, except that now only the rows of the matrix M need to add to 
one, instead of both the rows and the columns. 

I A 1 I A 

Z:Z:MiaD(Xi , Ya) + (j Z:Z: Mia(log Mia - 1) 
i=l a=1 i=l a=1 

Eeituter(Y, M) 

I A 

+ Z:Ai(LMia - 1) (4) 
i=l a=1 
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Here, the objects are point-sets or weighted graphs. If point-sets the distance mea­
sure D(Xi, Ya) is replaced by (1), if graphs it is replaced by (2) or (3). 

Therefore, given a set of objects, X, we construct Ecltuter and upon finding the 
appropriate saddle point of that objective, we will have Y, their cluster centers, 
and M, their cluster memberships. 

3 The Algorithm 

The algorithm to minimize the clustering objectives consists of two loops - an inner 
loop to minimize the distance measure objective [either (1) or (2)] and an outer 
loop to minimize the clustering objective (4). Using coordinate descent in the 
outer loop results in dynamics similar to the EM algorithm [Jordan and Jacobs, 
1994] for clustering. All variables occurring in the distance measure objective are 
held fixed during this phase. The inner loop uses coordinate ascent/descent which 
results in repeated row and column projections for m. The minimization of m, 
and the distance measure variables [either t, A of (1) or 1', (f of (2)], occurs in an 
incremental fashion, that is their values are saved after each inner loop call from 
within the outer loop and are then used as initial values for the next call to the 
inner loop. This tracking of the values of the distance measure variables in the 
inner loop is essential to the efficiency of the algorithm since it greatly speeds up 
each inner loop optimization. Most coordinate ascent/descent phases are computed 
analytically, further speeding up the algorithm. Some local minima are avoided, 
by deterministic annealing in both the outer and inner loops. The mUlti-phase 
dynamics maybe described as a clocked objective. Let {D} be the set of distance 
measure variables excluding m. The algorithm is as follows: 

Initialize {D} to the equivalent of an identity transform, Y to random values 
Begin Outer Loop 

Begin Inner Loop 
Initialize {D} with previous values 
Find m, {D} for each ia pair: 

Find m by softmax, projecting across j, then k, iteratively 
Find {D} by coordinate descent 

End Inner Loop 
Find M ,Y using fixed values of m, {D}, determined in inner loop: 

Find M by softmax, across i 
Find Y by coordinate descent 

Increase f3M, f3m 
End Outer Loop 

When analytic solutions are computed for Y the outer loop takes a form similar to 
fuzzy ISODATA clustering, with annealing on the fuzziness parameter. 

4 Methods and Experimental Results 

Four series of experiments were ran with randomly generated data to evaluate the 
learning algorithms. Point sets were clustered in the first three experiments and 
weighted graphs were clustered in the fourth. In each experiment a set of object 
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models were randomly generated. Then from each object model a set of object 
instances were created by transforming the object model according to the problem 
domain assumed for that experiment. For example, an object represented by points 
in two dimensional space was translated, rotated, scaled, sheared, and permuted 
to form a new point set. A object represented by a weighted graph was permuted. 
Noise was added to further distort the object. Parts of the object were deleted and 
spurious features (points) were added. In this manner, from a set of object models, 
a larger number of object instances were created. Then with no knowledge of the 
original objects models or cluster memberships, we clustered the object instances 
using the algorithms described above. 

The results were evaluated by comparing the object prototypes (cluster centers) 
formed by each experimental run to the object models used to generate the object 
instances for that experiment. The distance measures used in the clustering were 
used for this comparison, i.e. to calculate the distance between the learned pro­
totype and the original object. Note that this distance measure also incorporates 
the transformations used to create the object instances. The mean and standard 
deviations of these distances were plotted (Figure 1) over hundreds of experiments, 
varying the object instance generation noise. The straight line appearing on each 
graph displays the effect of the noise only. It is the expected object model-object 
prototype distance if no transformations were applied, no features were deleted or 
added, and the cluster memberships of the object instances were known. It serves 
as an absolute lower bound on our learning algorithm. The noise was increased in 
each series of experiments until the curve flattened - that is the object instances 
became so distorted by noise that no information about the original objects could 
be recovered by the algorithm. 

In the first series of experiments (Figure 1a), point set objects were translated, 
rotated, scaled, and permuted. Initial object models were created by selecting points 
with a uniform distribution within a unit square. The transformations to create 
the object instance were selected with a uniform distribution within the following 
bounds; translation: ±.5, rotation: ±27°, log(scale): ± log(.5). 100 object instances 
were generated from 10 object models. All objects contained 20 points.The standard 
deviation of the Gaussian noise was varied by .02 from .02 to .16. 15 experiments 
were run at each noise level. The data point at each error bar represents 150 
distances (15 experiments times 10 model-prototype distances for each experiment). 

In the second and third series of experiments (Figures 1b and 1c), point set objects 
were translated, rotated, scaled, sheared (obliquely and vertically), and permuted. 
Each object point had a 10% probability of being deleted and a 5% probability of 
generating a spurious point. The point sets and transformations were randomly 
generated as in the first experiment, except for these bounds; log(scale): ± log(.7), 
log(verticalshear): ±log(.7), and log(obliqueshear): ±log(.7). In experiment 2, 
64 object instances and 4 object models of 15 points each were used. In experiment 
3, 256 object instances and 8 object models of 20 points each were used. Noise 
levels like experiment 1 were used, with 20 experiments run at each noise level in 
experiment 2 and 10 experiments run at each noise level in experiment 3. 

In experiment 4 (Figure 1d), object models were represented by fully connected 
weighted graphs. The link weights in the initial object models were selected with a 
uniform distribution between 0 and 1. The objects were then randomly permuted 
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Figure 1: (a): 10 clusters, 100 point sets, 20 points each, scale ,rotation, translation, 
120 experiments (b): 4 clusters, 64 point sets, 15 points each, affine, 10 % deleted , 
5 % spurious, 140 experiments (c): 8 clusters, 256 point sets , 20 points each, affine , 
10 % deleted, 5 % spurious, 70 experiments (d): 4 clusters, 64 graphs, 10 nodes 
each , 360 experiments 

to form the object instance and uniform noise was added to the link weights. 64 
object instances were generated from 4 object models consisting of 10 node graphs 
with 100 links. The standard deviation of the noise was varied by .01 from .01 to 
.12. 30 experiments where run at each noise level. 

In most experiments at low noise levels (~ .06 for point sets, ~ .03 for graphs), the 
object prototypes learned were very similar to the object models. Even at higher 
noise levels object prototypes similar to the object models are formed, though less 
consistently. Results from about 700 experiments are plotted. The objective for 
experiment 3 contained close to one million variables and converged in about 4 
hours on an SGI Indigo workstation. The convergence times of the objectives of 
experiments 1, 2 and 4 were 120, 10 and 10 minutes respectively. 

5 Conclusions 

It has long been argued by many, that learning in complex domains typically asso­
ciated with human intelligence requires some type of prior structure or knowledge. 
We have begun to develop a set of tools that will allow the incorporation of prior 
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structure within learning. Our models incorporate many features needed in complex 
domains like vision - noise, missing and spurious features, non-rigid transformations. 
They can learn objects with inherent structure, like graphs. Many experiments have 
been run on experimentally generated data sets. Several directions for future re­
search hold promise. One might be the learning of OCR data [Gold et al., 1995]. 
Second a supervised learning stage could be added to our algorithms. Finally the 
power of the distance measures can be enhanced to operate on attributed relational 
graphs with deleted nodes and links [Gold and Rangarajan, 1995]. 
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