
U sing Local Trajectory Optimizers To 
Speed Up Global Optimization In 

Dynamic Programming 

Christopher G. Atkeson 
Department of Brain and Cognitive Sciences and 

the Artificial Intelligence Laboratory 
Massachusetts Institute of Technology, NE43-771 
545 Technology Square, Cambridge, MA 02139 

617-253-0788, cga@ai.mit.edu 

Abstract 

Dynamic programming provides a methodology to develop planners 
and controllers for nonlinear systems. However, general dynamic 
programming is computationally intractable. We have developed 
procedures that allow more complex planning and control problems 
to be solved. We use second order local trajectory optimization 
to generate locally optimal plans and local models of the value 
function and its derivatives. We maintain global consistency of the 
local models of the value function, guaranteeing that our locally 
optimal plans are actually globally optimal, up to the resolution of 
our search procedures. 

Learning to do the right thing at each instant in situations that evolve over time is 
difficult, as the future cost of actions chosen now may not be obvious immediately, 
and may only become clear with time. Value functions are a representational tool 
that makes the consequences of actions explicit. Value functions are difficult to 
learn directly, but they can be built up from learned models of the dynamics of the 
world and the cost function. This paper focuses on how fast optimizers that only 
produce locally optimal answers can playa useful role in speeding up the process 
of computing or learning a globally optimal value function. 

Consider a system with dynamics Xk+l = f(xk, Uk) and a cost function L(Xk, Uk), 

663 



664 Atkeson 

where x is the state of the system and u is a vector of actions or controls. The sub­
script k serves as a time index, but will be dropped in the equations that follow. A 
goal of reinforcement learning and optimal control is to find a policy that minimizes 
the total cost, which is the sum of the costs for each time step. One approach to 
doing this is to construct an optimal value function, V(x). The value of this value 
function at a state x is the sum of all future costs, given that the system started in 
state x and followed the optimal policy P(x) (chose optimal actions at each time 
step as a function of the state). A local planner or controller can choose globally 
optimal actions if it knew the future cost of each action. This cost is simply the 
sum of the cost of taking the action right now and the future cost of the state that 
the action leads to, which is given by the value function. 

u* = arg min (L(x, u) + V(f(x, u») 
u 

(1) 

Value functions are difficult to learn. The environment does not provide training 
examples that pair states with their optimal cost (x, V(x». In fact, it seems that the 
optimal policy depends on the optimal value function, which in turn depends on the 
optimal policy. Algorithms to compute value functions typically iteratively refine 
a candidate value function and/or a corresponding policy (dynamic programming). 
These algorithms are usually expensive. We use local optimization to generate 
locally optimal plans and local models of the value function and its derivatives. We 
maintain global consistency of the local models of the value function, guaranteeing 
that our locally optimal plans are actually globally optimal, up to the resolution of 
our search procedures. 

1 A SIMPLE EXAMPLE: A PENDULUM 

In this paper we will present a simple example to make our ideas clear. Figure 1 
shows a simulated set of locally optimal trajectories in phase space for a pendulum 
being driven by a motor at the joint from the stable to the unstable equilibrium 
position. S marks the start point, where the pendulum is hanging straight down, 
and G marks the goal point, where the pendulum is inverted (pointing straight up). 
The optimization criteria quadratically penalizes deviations from the goal point 
and the magnitude of the torques applied. In the three locally optimal trajectories 
shown the pendulum either swings directly up to the goal (1), moves initially away 
from the goal and then swings up to the goal (2), or oscillates to pump itself and 
then swing to the goal (3). In what follows we describe how to find these locally 
optimal trajectories and also how to find the globally optimal trajectory. 

2 LOCAL TRAJECTORY OPTIMIZATION 

We base our local optimization process on dynamic programming within a tube 
surrounding our current best estimate of a locally optimal trajectory (Dyer and 
McReynolds 1970, Jacobson and Mayne 1970). We have a local quadratic model 
of the cost to get to the goal (V) at each time step along the optimal trajectory 
(assume a time step index k in everything below unless otherwise indicated): 

1 T 
Vex) ~ Vo + Vxx + 2x Vxxx (2) 



Using Local Trajectory Optimizers to Speed Up Global Optimization 665 

I 

~ /" 
• 

1/// ~ e ~ / VI 
/ III " \ \ 

Is \ 
Go 

\ 
v' ') 

e 
I~ 

Figure 1: Locally optimal trajectories for the pendulum swing up task. 

A locally optim al policy can be computed using local models of the plant (in this 
case local linear models) at each time step along the trajectory: 

Xk+l = f(x, u) ~ Ax + Bu + c (3) 
and local quadratic models of the one step cost at each time step along the trajec­
tory: 

1 1 
L(x,u) ~ 2xT Qx+ 2uTRu+xTSu+tTu 

At each point along the trajectory the optimal policy is given by: 

u opt = -(R + BTVxxB)-1 x 

(BTVxxAx + ST x + BTVxxc + VxB + t) 

(4) 

One can integrate the plant dynamics forward in time based on the above policy, 
and then integrate the value functions and its first and second spatial derivatives 
backwards in time to compute an improved value function, policy, and trajectory. 

For a one step cost of the form: 

1 T 
L(x, u) ~ 2(x - Xd) Q(x - Xd)+ 

1 T T 
2(u - Ud) R(u - Ud) + (x - Xd) S(n - Ud) 

the backward sweep takes the following form (in discrete time): 

Zx = VxA + Q(x - Xd) 

Zu = VxB + R(u - Ud) 

Zxx = ATVxxA + Q 

Zux = BTVxxA + S 

Zuu = BTVxxB + R 

K = Z;;: Zux 
VXk _ 1 = Zx - ZuK 

VXXk _ 1 = Zxx - ZxuK 

(5) 

(6) 

(7) 
(8) 

(9) 
(10) 
(11) 
(12) 



666 Atkeson 

3 STANDARD DYNAMIC PROGRAMMING 

A typical implementation of dynamic programming in continuous state spaces dis­
cretizes the state space into cells, and assigns a fixed control action to each cell. 
Larson's state increment dynamic programming (Larson 1968) is a good example 
of this type of approach. In Figure 2A we see the trajectory segments produced by 
applying the constant action in each cell, plotted on a phase space for the example 
problem of swinging up a pendulum. 

4 USING LOCAL TRAJECTORY OPTIMIZATION 
WITH DP 

We want to minimize the number of cells used in dynamic programming by making 
the cells as large as possible. Combining local trajectory optimization with dynamic 
programming allows us to greatly reduce the resolution of the grid on which we do 
dynamic programming and still correctly estimate the cost to get to the goal from 
different parts of the space. Figure 2A shows a dynamic programming approach 
in which each cell contains a trajectory segment applied to the pendulum problem. 
Figure 2B shows our approach, which creates a set of locally optimal trajectories 
to the goal. By performing the local trajectory optimizations on a grid and forcing 
adjacent trajectories to be consistent, this local optimization process becomes a 
global optimization process. Forcing adjacent trajectories to be consistent means 
requiring that all trajectories can be generated from a single underlying policy. 
A trajectory can be made consistent with a neighbor by using the neighboring 
trajectory as an initial trajectory in the local optimization process, or by using the 
value function from the neighboring trajectory to generate the initial trajectory in 
the local optimization process. Each grid element stores the trajectory that starts 
at that point and achieves the lowest cost. 

The trajectory segments in figure 2A match the trajectories in 2B. Figures 2C and 
2D are low resolution versions of the same problem. Figure 2C shows that some 
of the trajectory segments are no longer correct. In Figure 2D we see the locally 
optimal trajectories to the goal are still consistent with the trajectories in Figure 2B. 
Using locally optimal trajectories which go all the way to the goal as building blocks 
for our dynamic programming algorithm allows us to avoid the problem of correctly 
interpolating the cost to get to the goal function on a sparse grid. Instead, the cost 
to get to the goal is measured directly on the optimal trajectory from each node to 
the goal. We can use a much sparser grid and still converge. 

5 ADAPTIVE GRIDS BASED ON CONSTANT COST 
CONTOURS 

We can limit the search by "growing" the volumes searched around the initial and 
goal states by gradually increasing a cost threshold Cg • We will only consider states 
around the goal that have a cost less than Cg to get to the goal and states around 
the initial state that have a cost less than Cg to get from the initial state to that 
state (Figure 3B). These two regions will increase in size as Cg is increased. We stop 



Using Local Trajectory Optimizers to Speed Up Global Optimization 667 

A B 

c o 
Figure 2: Different dynamic programming techniques (see text). 



668 Atkeson 

Figure 3: Volumes defined by a cost threshold. 

increasing Cg as soon as the two regions come into contact. The optimal trajectory 
has to be entirely within the union of these two regions, and has a cost of 2Cg . 

Instead of having the initial conditions of the trajectories laid out on a grid over the 
whole space, the initial conditions are laid out on a grid over the surface separating 
the inside and the outside surfaces of the volumes described above. The resolution 
of this grid is adaptively determined by checking whether the value function of one 
trajectory correctly predicts the cost of a neighboring trajectory. If it does not, 
additional grid points are added between the inconsistent trajectories. 

During this global optimization we separate the state space into a volume around 
the goal which has been completely solved and the rest of the state space, in which 
no exploration or computation has been done. Each iteration of the algorithm 
enlarges the completely solved volume by performing dynamic programming from 
a surface of slightly increased cost to the current constant cost surface. When the 
solved volume includes a known starting point or contacts a similar solved volume 
with constant cost to get to the boundary from the starting point, a globally optimal 
trajectory from the start to the goal has been found. 

6 DP BASED ON APPROXIMATING CONSTANT 
COST CONTOURS 

Unfortunately, adaptive grids based on constant cost contours still suffer from the 
curse of dimensionality, having only reduced the dimensionality of the problem by 
1. We are currently exploring methods to approximate constant cost contours. For 
example, constant cost contours can be approximated by growing "key" trajectories. 



Using Local Trajectory Optimizers to Speed Up Global Optimization 669 

;' 

/ 

\ 
" 

Figure 4: Approximate constant cost contours based on key trajectories 

A version of this is illustrated in Figure 4. Here, trajectories were grown along the 
"bottoms" of the value function "valleys". The location of a constant cost contour 
can be estimated by using local quadratic models of the value function produced 
by the process which optimizes the trajectory. These approximate representations 
do not suffer from the curse of dimensionality. They require on the order of T D2, 
where T is the length of time the trajectory requires to get to the goal, and D is 
the dimensionality of the state space. 

7 SUMMARY 

Dynamic programming provides a methodology to plan trajectories and design con­
trollers and estimators for nonlinear systems. However, general dynamic program­
ming is computationally intractable. We have developed procedures that allow more 
complex planning problems to be solved. We have modified the State Increment 
Dynamic Programming approach of Larson (1968) in several ways: 

1. In State Increment DP, a constant action is integrated to form a trajectory 
segment from the center of a cell to its boundary. We use second order local 
trajectory optimization (Differential Dynamic Programming) to generate an 
optimal trajectory and form an optimal policy in a tube surrounding the 
optimal trajectory within a cell. The trajectory segment and local policy 
are globally optimal, up to the resolution of the representation of the value 
function on the boundary of the cell. 

2. We use the optimal policy within each cell to guide the local trajectory 
optimization to form a globally optimal trajectory from the center of each 



670 Atkeson 

cell all the way to the goal. This helps us avoid the accumulation of inter­
polation errors as one moves from cell to cell in the state space, and avoid 
limitations caused by limited resolution of the representation of the value 
function over the state space. 

3. The second order trajectory optimization provides us with estimates of 
the value function and its first and second spatial derivatives along each 
trajectory. This provides a natural guide for adaptive grid approaches. 

4. During the global optimization we separate the state space into a volume 
around the goal which has been completely solved and the rest of the state 
space, in which no exploration or computation has been done. The sur­
face separating these volumes is a surface of constant cost, with respect to 
achieving the goal. 

5. Each iteration of the algorithm enlarges the completely solved volume by 
performing dynamic programming from a surface of slightly increased cost 
to the current constant cost surface. 

6. When the solved volume includes a known starting point or contacts a 
similar solved volume with constant cost to get to the boundary from the 
starting point, a globally optimal trajectory from the start to the goal has 
been found. No optimal trajectory will ever leave the solved volumes. This 
would require the trajectory to increase rather than decrease its cost to get 
to the goal as it progressed. 

7. The surfaces of constant cost can be approximated by a representation that 
avoids the curse of dimensionality. 

8. The true test of this approach lies ahead: Can it produce reasonable solu­
tions to complex problems? 

Acknowledgenlents 

Support was provided under Air Force Office of Scientific Research grant AFOSR-
89-0500, by the Siemens Corporation, and by the ATR Human Information Process­
ing Research Laboratories. Support for CGA was provided by a National Science 
Foundation Presidential Young Investigator A ward. 

References 

Bellman, R., (1957) Dynamic Programming, Princeton University Press, Princeton, 
NJ. 

Bertsekas, D.P., (1987) Dynamic Programming: Deterministic and Stochastic Mod­
els, Prentice-Hall, Englewood Cliffs, NJ. 

Dyer, P. and S.R. McReynolds, (1970) The Computation and Theory of Optimal 
Control, Academic Press, New York, NY. 

Jacobson, D.H. and D.Q. Mayne, (1970) Differential Dynamic Programming, Else­
vier, New York, NY. 

Larson, R.E., (1968) State Increment Dynamic Programming, Elsevier, New York, 
NY. 


