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Abstract: 
There exist a number of negative results ([J), [BR), [KV]) about 
learning on neural nets in Valiant's model [V) for probably approx­
imately correct learning ("PAC-learning"). These negative results 
are based on an asymptotic analysis where one lets the number of 
nodes in the neural net go to infinit.y. Hence this analysis is less ad­
equate for the investigation of learning on a small fixed neural net. 
with relatively few analog inputs (e.g. the principal components of 
some sensory data). The latter type of learning problem gives rise 
to a different kind of asymptotic question: Can the true error of the 
neural net be brought arbitrarily close to that of a neural net with 
"optimal" weights through sufficiently long training? In this paper 
we employ some new arguments ill order to give a positive answer 
to this question in Haussler's rather realistic refinement of Valiant's 
model for PAC-learning ([H), [KSS)). In this more realistic model 
no a-priori assumptions are required about the "learning target" , 
noise is permitted in the training data, and the inputs and outputs 
are not restricted to boolean values. As a special case our result 
implies one of the first positive results about learning on multi-layer 
neural net.s in Valiant's original PAC-learning model. At the end 
of this paper we will describe an efficient parallel implementation 
of this new learning algorit.hm. 
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We consider multi-layer high order feedforward neural nets N with arbitrary piece­
wise polynomial activation functions . Each node g of fan-in m > 0 in N is 
called a computation node. It is labelled by some polynomial Q9(Yl, ... , Ym) 
and some piecewise polynomial activation funetion ,9 : R --+ R. We assume 
that ,9 consists of finitely many polynomial pieces and that its definition in­
volves only rational parameters. The computation node g computes the function 
(Yl, ... ,Ym) t-+ ,9 (Q9 (Yl, ... , Ym)) from R minto R. The nodes of fan-in 0 in N 
("input nodes") are labelled by variables Xl, ... , Xk. The nodes g of fan-out 0 in 
N ("output nodes") are labelled by 1, ... , I. We assume that the range B of their 
activation functions ,9 is bounded. Any parameters that occur in the definitions of 
the ,9 are referred to as architectural parameters of N. 

The coefficient.s of all the polynomials Q9 are called the programmable parameters 
(or weights) of N. Let w be the number of programmable parameters of N. For any 
assignment a E R W to the programmable parameters of N the network computes 
a function from Rk into RI which we will denote by N!!... 

We write Q n for the set of rational numbers that can be written as quotients of 
I 

integers with bit-length::; n. For;,. = (Zl, .. . ,ZI) E RI we write 11;,.lh for E Iz;l. 
;=1 

Let F : Rk --+ RI be some arbitrary function, which we will view as a "prediction 
rule". For any given instance (~, 1/) E R k X Rl we measure the error of F by 

"F(~) - 111 II· For any distribution A over some subset of R k x Rl we measure the 
true error of F with regard to A by E(£,Y)EA [IIF(~) -lllll]' i.e. the expected value 
of the error of F with respect to distribution A. 

Theorelll 1: Let N be some arbitrary high order feedforward neural net with piece­
wise polynomial activation functions. Let tv be the number of programmable para­
meters of N (we assume that w = 0(1)). Then one can construct from N some 
first order feedforward neural net jj with piecewise linear activation functions and 
the quadratic activation function ,(x) = x2, which has the following property: 
There exists a polynomial m(:, i) and a learning algorithm LEARN such that for 

any given €, 6, E (0,1) and s, n E N and any distribution A over Q~ x (Qn n B)l 
the following holds: 
For any sample ( = ({Xi, Yi) )i=l, ... ,m of m ~ m(:, i) points that are independently 
drawn according to A the algorithm LEARN computes in polynomially in m, s, n 
computation steps an assignment ii of rational numb~rs to the programmable para­
meters of jj such that with probability ~ 1 - 6: 

or in other words: 
The true error of jjli with regard to A is within € of the least possible true error 
that can be achieved by any N!!.. with a E Q:. 
Remarks 

a) One can easily see (see [M 93b] for details) that Theorem 1 provides a 
positive learning result in Haussler's extension of Valiant's model for PAC­
learning ([H], [KSS]). The "touchstone class" (see [KSS)) is defined as the 
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class of function f : Rk -+ Rl that are computable on N with program­
mable parameters from Q. 
This fact is of some general interest, since so far only very few positive 
results are known for any learning problem in this rather realistic (but 
quite demanding) learning model. 

b) Consider the special case where the distribution A over Q~ x (Qn n B)l is 
of the form 

{ 
D(~) 

ADIO'T(~' y) = - - 0 otherwise 

for some arbitrary distribution D over the domain Q~ and some arbitrary 
Q:T E Q~. Then the term 

inf EC~IY}EA[IINQ.(~) -lllhl 
a EQw -
- 3 

is equal to O. Hence the preceding theorem states that with learning algo­
rithm LEARN the "learning network" jj can "learn" with arbitrarily small 
true error any target function NQT that is computable on N with rational 
"weights" aT' Thus by choosing N sufficiently large, one can guarantee 
that the associated "learning network" jj can learn any target-function 
that might arise in the context of a specific learning problem. 

In addition the theorem also applies to the more realistic situation where 
the learner receives examples (~, y) of the form (~, NQT (~)+ noise), or even 
if there exists no "target function" NQT that would "explain" the actual 
distribution A of examples (~, ll) ("agnostic learning"). 

The proof of Theorem 1 is mathematically quite involved, and we can give here 
only an outline. It consists of three steps: 

(1) Construction of the auxiliary neural net fl . 

(2) Reducing the optimization of weights in jj for a given distribution A to a 
finite nonlinear optimization problem. 

(3) Reducing the resulting finite nonlinear optimization problem to a family of 
finite linear optimization problems. 

Details to step (1): If the activation functions ,9 in N are piecewise linear and 
all computation nodes in N have fan-out::; 1 (this occurs for example if N has just 
one hidden layer and only one output) then one can set fI := N. If the ,9 are 
piecewise linear but not all computation nodes in N have fan-out::; lone defines 
jj as the tree of the same depth as N, where sub circuits of computation nodes with 
fan-out m > 1 are duplicated 111 times. The activation functions remain unchanged 
in this case. 

If the activation functions ,9 are piecewise polynomial but not piecewise linear, 
one has to apply a rather complex construction which is described in detail in the 
Journal version of [M 93a]. In any case if has the property that all functions that 
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are computable on N can also be computed on N, the depth of N is bounded by a 
constant, and the size of N is bounded by a polynomial in the size of N (provided 
that the depth and order of N, as well as the number and degrees of the polynomial 
pieces of the "'(9 are bounded by a constant). 

Details to step (2): Since the VC-dimension of a neural net is only defined 
for neural nets with boolean output, one has to consider here instead the pseudo­
dimension of the function class F that is defined by N. 

Definition: (see Haussler (H]). 
Let X be some arbitrary domain, and let F be an arbitrary class of functions from 
X into R. Then the pseudo-dimension of F is defined by 

dimp(F) := max{ISI: S ~ X and 3h : S --+ R such that 

Vb E {O, l}s 31 E F Vx E S (I(x) ~ hex) ~ b(x) = I)}. 
Note that in the special case where F is a concept class (i.e. all 1 E Fare ° - 1 
valued) the pseudo-dimension dimp(F) coincides with the VC-dimension of F. The 
pseudo-dimension of the function class associated with network architectures N with 
piecewise polynomial activation functions can be bounded with the help of Milnor's 
Theorem [Mi] in the same way as the VC-dimension for the case of boolean network 
output (see [GJ)): 

Theorenl 2: Consider arbitrary network architectures N of order v with k input 
nodes, I output nodes, and w programmable parameters. Assume that each gate in 
N employs as activation function some piecewise polynomial (or piecewise rational) 
function of degree ~ d with at most q pieces. For some arbitrary p E {I, 2, ... } 
we define F { 1 : R k+1 --+ R : 30: E R W Vx E Rk V1!. E Rl(l(~,1!.) 
IINQ'.(.~) -1!.lIp)}· Then one has dimp(F) = 0(w2 10gq) if v, d, 1= 0(1). • 

With the help of the pseudo-dimension one can carry out the desired reduction of 
the optimization of weights in N (with regard to an arbitrary given distribution A 
of examples (~, 11.) to a finite optimization problem. Fix some interval [b1 , b2] ~ R 
such that B ~ [b1 , b2], b1 < b2, and such that the ranges of the activation functions 
of the output gates of N are contained in [b1 , b2]. We define b := I· (b 2 - bt) , and 
F:= {f :RkX[b1 ,b2]I--+[0,b]: 30:ERwV~ERkV1!.E[bl,b2F(f(~,1!.)= 
IINQ'.(~) - YIII)}· Assume now that parameters c, 6 E (0,1) with c ~ band s, n E N 
have been -fixed. For convenience we assume that s is sufficiently large so that 
all architectural parameters in N are from Qs (we assume that all architectural 
parameters in Ai are rational). We define 

(11) 257·b2 (. 33eb 8) 
771 €'"8 := c2 2· dllnp(F) .In-c- + In"8 . 

By Corollary 2 of Theorem 7 in Haussler [H) one has for 771 ~ 771(:, i), I< := y~57 E 
(2,3), and any distribution A over Q~ x (Qn n [b 1 ,b2))1 

(1) 1 ~ c 
P7'(EAm[{31 E F: 1(771 L...J /(!1.,1!.») - E(~,.~)EA[f(!1.'1!.)]I > I<}] < 6, 

(~,~)E( 
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where E(~.!!)EA [f(~, u)] is the expectation of f(~, u) with regard to distribution A. 

We design an algorithm LEARN that computes for any mEN, any sample 

(= ((Xi,yi))iE{l •..• m} E (Q~ x (Qn n [b 1 ,b2])I)m, 
and any given sEN in polynomially in m, s, n computation steps an assignment 
a of rational numbers to the parameters in j\( such that the function it that is 
computed by j\(!i. satisfies 

1 m _ 2 
(2) Tn L Ilh(xd - ydh ~ (1 - ]{)e + 

i=l 

m 

inf ~ ~ IIN£(xd - ydh· 
w m~ --

a E Q" i=l 

This suffices for the proof of Theorem 1, since (1) and (2) together imply that, for 
any distribution A over Q~ x (Qn n [b1 , b2])1 and any m ~ m( 1, i), with probability 
~ 1 - 6 (with respect to the random drawing of ( E Am) the algorithm LEARN 
outputs for inputs ( and s an assignment a of rational numbers to the parameters 
in j\( such that 

E(~'1!:)EA[IIN!i.(~) -ulld ~ c + inf E(!:.Y)EA[IIN£(~) -ulh]· 
a E Q~ -

Details to step (3): The computation of weights a that satisfy (2) is nontrivial, 
since this amounts t.o solving a nonlinear optimization problem. This holds even if 
each activation function in N is piecewise linear, because weights from successive 
layers are multiplied with each other. 

We employ a method from [M 93a] that allows us to replace the nonlinear conditions 
on the programmable parameters a of N by linear conditions for a transformed set 
.£, f3 of parameters. We simulate j\(£ by another network architecture N[£]~ (which 

one may view as a "normal form" for j\(£) that uses the same graph (V, E) as 
N, but different activation functions and different values f3 for its programmable 

parameters. The activation functions of N[.£] depend on IVI new architectural 
parameters .£ E RI vI, which we call scaling parameters in the following. Whereas 
the architectural parameters of a network architecture are usually kept fixed, we 
will be forced to change the scaling parameters of N along with its programmable 
parameters f3. Although this new network architecture has the disadvantage that 
it requires IVI additional parameters .£, it has the advantage that we can choose in 
N[£] all weights on edges between computation nodes to be from {-I,O, I}. Hence 
we can treat them as constants with at most 3 possible values in the system of 
inequalities that describes computations of N[£]. Thereby we can achieve that all 
variables that appear in the inqualities that describe computations of N[£J for fixed 
network inputs (the variables for weights of gates on levell, the variables for the 
biases of gates on all levels, and the new variables for the scaling parameters .£) 
appear only linearly in those inqualities. 

We briefly indicate the construction of N in the case where each activation function 
"I in N is piecewise linear. For any c > ° we consider the associated piecewise linear 
activation function "Ic with 

T;f x E R( "Ic (c . x) = c . "I ( x ) ). 
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Assume that fr is some arbitrary given assignment to the programmable parameters 
in jj. We transform jjsr through a recursive process into a "normal form" N(£]t 
in which all weights on edges between computation nodes are from {-I, 0, I}, such 

that \:f ll. E R k (jjsr(ll.) = N(£]t(ll.») . 

q 

Assume that an output gate gout of jjsr receives as input L: aiYi + ao, where 
i=l 

al, ... , a q , ao are the weights and the bias of gout (under the assignment a) and 
Yl, ... ,Yq are the (real valued) outputs of the immediate predecessors g1, ... ,gq of 
g. For each i E {I, ... , q} with 0i =/:- 0 such that gi is not an input node we replace 
the activation function "fi of gi by "f!a,l, and we multiply the weights and the bias 
of gate gi with lail. Finally we replace the weight ai of gate gout by sgn( ad, where 
sgn(ad := 1 ifai > 0 and sgn(ai) := -1 ifai < o. This operation has the effect 
that the multiplication with IOj I is carried out before the gate gi (rather than after 
gj, as done in jjsr), but that the considered output gate gout still receives the same 
input as before. If aj = 0 we want to "freeze" that weight at O. This can be done 
by deleting gi and all gates below gi from N. 
The analogous operations are recursively carried out for the predecessors gi of gout 
(note however that the weights of gj are no longer the original ones from jjsr, since 
they have been changed in the preceding step). We exploit here the assumption 
that each gate in jj has fan-out::; 1. 

Let f3 consist of the new weights on edges adjacent to input nodes and of the 

resulting biases of all gates in N. Let f consist of the resulting scaling parameters 

at the gates of N. Then we have \:f~ E Rk (jjsr(~) = N[.£]t(~»). Furthermore c > 0 

for all scaling parameters c in f. 

At the end of this proof we will also need the fact that the previously described para­
meter transformation can be inverted, i.e. one can compute from Q, f3 an equivalent 

weight assignment a for jj (with the original activation functions "f). 

We now describe how the algorithm LEARN computes for any given sample 
(= ({Xi,Yi)i=l ..... m E (Q~ x (Q" n[b l ,b2W)m and any given sEN with the 
help of linear programming a new assignment .£, ~ to the parameters in N such that 

the function It that is computed by N@]i satisfies (2). For that purpose we describe 
the computations of N for the fixed inputs Xi from the sample ( = ((Xi, Yi) )i=l .. .. ,m 

by polynomially in m many systems L l , . .. , Lp(m) that each consist of Oem) linear 
inequalities with the transformed parameters Q, f3 as variables. Each system Lj re­
flects one possibility for employing specific linear pieces of the activation functions in 
N for specific network inputs Xl, ... , X m , and for employing different combinations 
of weights from {-I, 0, I} for edges between computation nodes. 

One can show that it suffices to consider only polynomially in Tn many systems 
of inequalities L j by exploiting that all inequalities are linear, and that the input 
space for N has bounded dimension k. 
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We now expand each of the systems Lj (which has only 0(1) variables) into a 
linear programming problem LPj with Oem) variables. We add to Lj for each of 
the I output nodes IJ of N 2m new variables ur, vr for i = 1, ... , m, and the 4m 
inequalities 

tj(xd :S (Y;)II + ui - vi, tj(xd ~ (Ydll + ui - vi, ui ~ 0, vi ~ 0, 

where ((Xi, Yi) )i=l , .. . ,m is the fixed sample ( and (Yi)1I is that coordinate of Yj which 

corresponds to the output node IJ of N. In these inequalities the symbol tj(xd de­
notes the term (which is by construction linear in the variables f, (3) that represents 
the output of gate IJ for network input Xi in this system Lj. One-should note that 
these terms tj( Xi) will in general be different for different j, since different linear 
pieces of the activation functions at preceding gates may be used in the computation 
of N for the same network input Xi. We expand the system Lj of linear inequalities 
to a linear programming problem LPj in canonical form by adding the optimization 
requirement 

m 

mmlmlze 
i=l IJ output node 

The algorithm LEARN employs an efficient algorithm for linear programming (e.g. 
the ellipsoid algorithm, see [PS]) in order to compute in altogether polynomially 
in m, sand n many steps an optimal solution for each of the linear programming 
problems LP1 , ... , LPp(m). We write hj for the function from Rk into Rl that is 

computed by N[f]~ for the optimal solution £, (3 of LPj. The algorithm LEARN 
m 

computes ~ '" Ilhj(xj) - Yilll for j = 1, . .. ,p(m). Let] be that index for which mL...J - -
i=l 

this expression has a minimal value . Let f, ~ be the associated optimal solution of 

LPl (i.e. N@)l computes hl). LEARN employs the previously mentioned back­

wards transformation from f, j3 into values Ii for the programmable parameters of 

jj such that 'V~ E Rk (jjQ.(~) = N[f.]l(~)). These values a are given as output of 
the algorithm LEARN. 

We refer to [M 93b] for the verification that this weight assignment a has the 
property that is claimed in Theorem 1. We also refer to [M 93b] for the proof in the 
more general case where the activation functions of N are piecewise polynomial .• 

Reillark: The algorithm LEARN can be speeded up substantially on a parallel ma­
chine. Furthermore if the individual processors of the parallel machine are allowed 
to use random bits, hardly any global control is required for this parallel computa­
tion. We use polynomially in m many processors. Each processor picks at random 
one of the systems Lj of linear inequalit.ies and solves the corresponding linear pro­
gramming problem LPj . Then the parallel machine compares in a "competitive 

m 

phase" the costs L: Ilhj(Xi) - ydh of the solutions hj that have been computed by 
i=l - -

the individual processors. It outputs the weights a for jj that correspond to the 
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best ones of these solutions hj . If one views the number w of weights in N no longer 
as a c.onstant, one sees that the number of processores that are needed is simply 
exponential in w, but that the parallel computation time is polynomial in m and 
w. 
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