
Agnostic PAC-Learning of Functions on
Analog Neural Nets

(Extended Abstract)

Wolfgang Maass

Institute for Theoretical Computer Science
Technische Universitaet Graz

Klosterwiesgasse 32/2
A-BOlO Graz, Austria

e-mail: maass@igi.tu-graz.ac.at

Abstract:
There exist a number of negative results ([J), [BR), [KV]) about
learning on neural nets in Valiant's model [V) for probably approx
imately correct learning ("PAC-learning"). These negative results
are based on an asymptotic analysis where one lets the number of
nodes in the neural net go to infinit.y. Hence this analysis is less ad
equate for the investigation of learning on a small fixed neural net.
with relatively few analog inputs (e.g. the principal components of
some sensory data). The latter type of learning problem gives rise
to a different kind of asymptotic question: Can the true error of the
neural net be brought arbitrarily close to that of a neural net with
"optimal" weights through sufficiently long training? In this paper
we employ some new arguments ill order to give a positive answer
to this question in Haussler's rather realistic refinement of Valiant's
model for PAC-learning ([H), [KSS)). In this more realistic model
no a-priori assumptions are required about the "learning target" ,
noise is permitted in the training data, and the inputs and outputs
are not restricted to boolean values. As a special case our result
implies one of the first positive results about learning on multi-layer
neural net.s in Valiant's original PAC-learning model. At the end
of this paper we will describe an efficient parallel implementation
of this new learning algorit.hm.

311

312 Maass

We consider multi-layer high order feedforward neural nets N with arbitrary piece
wise polynomial activation functions . Each node g of fan-in m > 0 in N is
called a computation node. It is labelled by some polynomial Q9(Yl, ... , Ym)
and some piecewise polynomial activation funetion ,9 : R --+ R. We assume
that ,9 consists of finitely many polynomial pieces and that its definition in
volves only rational parameters. The computation node g computes the function
(Yl, ... ,Ym) t-+ ,9 (Q9 (Yl, ... , Ym)) from R minto R. The nodes of fan-in 0 in N
("input nodes") are labelled by variables Xl, ... , Xk. The nodes g of fan-out 0 in
N ("output nodes") are labelled by 1, ... , I. We assume that the range B of their
activation functions ,9 is bounded. Any parameters that occur in the definitions of
the ,9 are referred to as architectural parameters of N.

The coefficient.s of all the polynomials Q9 are called the programmable parameters
(or weights) of N. Let w be the number of programmable parameters of N. For any
assignment a E R W to the programmable parameters of N the network computes
a function from Rk into RI which we will denote by N!!...

We write Q n for the set of rational numbers that can be written as quotients of
I

integers with bit-length::; n. For;,. = (Zl, .. . ,ZI) E RI we write 11;,.lh for E Iz;l.
;=1

Let F : Rk --+ RI be some arbitrary function, which we will view as a "prediction
rule". For any given instance (~, 1/) E R k X Rl we measure the error of F by

"F(~) - 111 II· For any distribution A over some subset of R k x Rl we measure the
true error of F with regard to A by E(£,Y)EA [IIF(~) -lllll]' i.e. the expected value
of the error of F with respect to distribution A.

Theorelll 1: Let N be some arbitrary high order feedforward neural net with piece
wise polynomial activation functions. Let tv be the number of programmable para
meters of N (we assume that w = 0(1)). Then one can construct from N some
first order feedforward neural net jj with piecewise linear activation functions and
the quadratic activation function ,(x) = x2, which has the following property:
There exists a polynomial m(:, i) and a learning algorithm LEARN such that for

any given €, 6, E (0,1) and s, n E N and any distribution A over Q~ x (Qn n B)l
the following holds:
For any sample (= ({Xi, Yi))i=l, ... ,m of m ~ m(:, i) points that are independently
drawn according to A the algorithm LEARN computes in polynomially in m, s, n
computation steps an assignment ii of rational numb~rs to the programmable para
meters of jj such that with probability ~ 1 - 6:

or in other words:
The true error of jjli with regard to A is within € of the least possible true error
that can be achieved by any N!!.. with a E Q:.
Remarks

a) One can easily see (see [M 93b] for details) that Theorem 1 provides a
positive learning result in Haussler's extension of Valiant's model for PAC
learning ([H], [KSS]). The "touchstone class" (see [KSS)) is defined as the

Agnostic PAC-Learning of Functions on Analog Neural Nets 313

class of function f : Rk -+ Rl that are computable on N with program
mable parameters from Q.
This fact is of some general interest, since so far only very few positive
results are known for any learning problem in this rather realistic (but
quite demanding) learning model.

b) Consider the special case where the distribution A over Q~ x (Qn n B)l is
of the form

{
D(~)

ADIO'T(~' y) = - - 0 otherwise

for some arbitrary distribution D over the domain Q~ and some arbitrary
Q:T E Q~. Then the term

inf EC~IY}EA[IINQ.(~) -lllhl
a EQw -
- 3

is equal to O. Hence the preceding theorem states that with learning algo
rithm LEARN the "learning network" jj can "learn" with arbitrarily small
true error any target function NQT that is computable on N with rational
"weights" aT' Thus by choosing N sufficiently large, one can guarantee
that the associated "learning network" jj can learn any target-function
that might arise in the context of a specific learning problem.

In addition the theorem also applies to the more realistic situation where
the learner receives examples (~, y) of the form (~, NQT (~)+ noise), or even
if there exists no "target function" NQT that would "explain" the actual
distribution A of examples (~, ll) ("agnostic learning").

The proof of Theorem 1 is mathematically quite involved, and we can give here
only an outline. It consists of three steps:

(1) Construction of the auxiliary neural net fl .

(2) Reducing the optimization of weights in jj for a given distribution A to a
finite nonlinear optimization problem.

(3) Reducing the resulting finite nonlinear optimization problem to a family of
finite linear optimization problems.

Details to step (1): If the activation functions ,9 in N are piecewise linear and
all computation nodes in N have fan-out::; 1 (this occurs for example if N has just
one hidden layer and only one output) then one can set fI := N. If the ,9 are
piecewise linear but not all computation nodes in N have fan-out::; lone defines
jj as the tree of the same depth as N, where sub circuits of computation nodes with
fan-out m > 1 are duplicated 111 times. The activation functions remain unchanged
in this case.

If the activation functions ,9 are piecewise polynomial but not piecewise linear,
one has to apply a rather complex construction which is described in detail in the
Journal version of [M 93a]. In any case if has the property that all functions that

314 Maass

are computable on N can also be computed on N, the depth of N is bounded by a
constant, and the size of N is bounded by a polynomial in the size of N (provided
that the depth and order of N, as well as the number and degrees of the polynomial
pieces of the "'(9 are bounded by a constant).

Details to step (2): Since the VC-dimension of a neural net is only defined
for neural nets with boolean output, one has to consider here instead the pseudo
dimension of the function class F that is defined by N.

Definition: (see Haussler (H]).
Let X be some arbitrary domain, and let F be an arbitrary class of functions from
X into R. Then the pseudo-dimension of F is defined by

dimp(F) := max{ISI: S ~ X and 3h : S --+ R such that

Vb E {O, l}s 31 E F Vx E S (I(x) ~ hex) ~ b(x) = I)}.
Note that in the special case where F is a concept class (i.e. all 1 E Fare ° - 1
valued) the pseudo-dimension dimp(F) coincides with the VC-dimension of F. The
pseudo-dimension of the function class associated with network architectures N with
piecewise polynomial activation functions can be bounded with the help of Milnor's
Theorem [Mi] in the same way as the VC-dimension for the case of boolean network
output (see [GJ)):

Theorenl 2: Consider arbitrary network architectures N of order v with k input
nodes, I output nodes, and w programmable parameters. Assume that each gate in
N employs as activation function some piecewise polynomial (or piecewise rational)
function of degree ~ d with at most q pieces. For some arbitrary p E {I, 2, ... }
we define F { 1 : R k+1 --+ R : 30: E R W Vx E Rk V1!. E Rl(l(~,1!.)
IINQ'.(.~) -1!.lIp)}· Then one has dimp(F) = 0(w2 10gq) if v, d, 1= 0(1). •

With the help of the pseudo-dimension one can carry out the desired reduction of
the optimization of weights in N (with regard to an arbitrary given distribution A
of examples (~, 11.) to a finite optimization problem. Fix some interval [b1 , b2] ~ R
such that B ~ [b1 , b2], b1 < b2, and such that the ranges of the activation functions
of the output gates of N are contained in [b1 , b2]. We define b := I· (b 2 - bt) , and
F:= {f :RkX[b1 ,b2]I--+[0,b]: 30:ERwV~ERkV1!.E[bl,b2F(f(~,1!.)=
IINQ'.(~) - YIII)}· Assume now that parameters c, 6 E (0,1) with c ~ band s, n E N
have been -fixed. For convenience we assume that s is sufficiently large so that
all architectural parameters in N are from Qs (we assume that all architectural
parameters in Ai are rational). We define

(11) 257·b2 (. 33eb 8)
771 €'"8 := c2 2· dllnp(F) .In-c- + In"8 .

By Corollary 2 of Theorem 7 in Haussler [H) one has for 771 ~ 771(:, i), I< := y~57 E
(2,3), and any distribution A over Q~ x (Qn n [b 1 ,b2))1

(1) 1 ~ c
P7'(EAm[{31 E F: 1(771 L...J /(!1.,1!.») - E(~,.~)EA[f(!1.'1!.)]I > I<}] < 6,

(~,~)E(

Agnostic PAC-Learning of Functions on Analog Neural Nets 315

where E(~.!!)EA [f(~, u)] is the expectation of f(~, u) with regard to distribution A.

We design an algorithm LEARN that computes for any mEN, any sample

(= ((Xi,yi))iE{l •..• m} E (Q~ x (Qn n [b 1 ,b2])I)m,
and any given sEN in polynomially in m, s, n computation steps an assignment
a of rational numbers to the parameters in j\(such that the function it that is
computed by j\(!i. satisfies

1 m _ 2
(2) Tn L Ilh(xd - ydh ~ (1 -]{)e +

i=l

m

inf ~ ~ IIN£(xd - ydh·
w m~ --

a E Q" i=l

This suffices for the proof of Theorem 1, since (1) and (2) together imply that, for
any distribution A over Q~ x (Qn n [b1 , b2])1 and any m ~ m(1, i), with probability
~ 1 - 6 (with respect to the random drawing of (E Am) the algorithm LEARN
outputs for inputs (and s an assignment a of rational numbers to the parameters
in j\(such that

E(~'1!:)EA[IIN!i.(~) -ulld ~ c + inf E(!:.Y)EA[IIN£(~) -ulh]·
a E Q~ -

Details to step (3): The computation of weights a that satisfy (2) is nontrivial,
since this amounts t.o solving a nonlinear optimization problem. This holds even if
each activation function in N is piecewise linear, because weights from successive
layers are multiplied with each other.

We employ a method from [M 93a] that allows us to replace the nonlinear conditions
on the programmable parameters a of N by linear conditions for a transformed set
.£, f3 of parameters. We simulate j\(£ by another network architecture N[£]~ (which

one may view as a "normal form" for j\(£) that uses the same graph (V, E) as
N, but different activation functions and different values f3 for its programmable

parameters. The activation functions of N[.£] depend on IVI new architectural
parameters .£ E RI vI, which we call scaling parameters in the following. Whereas
the architectural parameters of a network architecture are usually kept fixed, we
will be forced to change the scaling parameters of N along with its programmable
parameters f3. Although this new network architecture has the disadvantage that
it requires IVI additional parameters .£, it has the advantage that we can choose in
N[£] all weights on edges between computation nodes to be from {-I,O, I}. Hence
we can treat them as constants with at most 3 possible values in the system of
inequalities that describes computations of N[£]. Thereby we can achieve that all
variables that appear in the inqualities that describe computations of N[£J for fixed
network inputs (the variables for weights of gates on levell, the variables for the
biases of gates on all levels, and the new variables for the scaling parameters .£)
appear only linearly in those inqualities.

We briefly indicate the construction of N in the case where each activation function
"I in N is piecewise linear. For any c > ° we consider the associated piecewise linear
activation function "Ic with

T;f x E R("Ic (c . x) = c . "I (x)).

316 Maass

Assume that fr is some arbitrary given assignment to the programmable parameters
in jj. We transform jjsr through a recursive process into a "normal form" N(£]t
in which all weights on edges between computation nodes are from {-I, 0, I}, such

that \:f ll. E R k (jjsr(ll.) = N(£]t(ll.») .

q

Assume that an output gate gout of jjsr receives as input L: aiYi + ao, where
i=l

al, ... , a q , ao are the weights and the bias of gout (under the assignment a) and
Yl, ... ,Yq are the (real valued) outputs of the immediate predecessors g1, ... ,gq of
g. For each i E {I, ... , q} with 0i =/:- 0 such that gi is not an input node we replace
the activation function "fi of gi by "f!a,l, and we multiply the weights and the bias
of gate gi with lail. Finally we replace the weight ai of gate gout by sgn(ad, where
sgn(ad := 1 ifai > 0 and sgn(ai) := -1 ifai < o. This operation has the effect
that the multiplication with IOj I is carried out before the gate gi (rather than after
gj, as done in jjsr), but that the considered output gate gout still receives the same
input as before. If aj = 0 we want to "freeze" that weight at O. This can be done
by deleting gi and all gates below gi from N.
The analogous operations are recursively carried out for the predecessors gi of gout
(note however that the weights of gj are no longer the original ones from jjsr, since
they have been changed in the preceding step). We exploit here the assumption
that each gate in jj has fan-out::; 1.

Let f3 consist of the new weights on edges adjacent to input nodes and of the

resulting biases of all gates in N. Let f consist of the resulting scaling parameters

at the gates of N. Then we have \:f~ E Rk (jjsr(~) = N[.£]t(~»). Furthermore c > 0

for all scaling parameters c in f.

At the end of this proof we will also need the fact that the previously described para
meter transformation can be inverted, i.e. one can compute from Q, f3 an equivalent

weight assignment a for jj (with the original activation functions "f).

We now describe how the algorithm LEARN computes for any given sample
(= ({Xi,Yi)i=l m E (Q~ x (Q" n[b l ,b2W)m and any given sEN with the
help of linear programming a new assignment .£, ~ to the parameters in N such that

the function It that is computed by N@]i satisfies (2). For that purpose we describe
the computations of N for the fixed inputs Xi from the sample (= ((Xi, Yi))i=l ,m

by polynomially in m many systems L l , . .. , Lp(m) that each consist of Oem) linear
inequalities with the transformed parameters Q, f3 as variables. Each system Lj re
flects one possibility for employing specific linear pieces of the activation functions in
N for specific network inputs Xl, ... , X m , and for employing different combinations
of weights from {-I, 0, I} for edges between computation nodes.

One can show that it suffices to consider only polynomially in Tn many systems
of inequalities L j by exploiting that all inequalities are linear, and that the input
space for N has bounded dimension k.

Agnostic PAC-Learning of Functions on Analog Neural Nets 317

We now expand each of the systems Lj (which has only 0(1) variables) into a
linear programming problem LPj with Oem) variables. We add to Lj for each of
the I output nodes IJ of N 2m new variables ur, vr for i = 1, ... , m, and the 4m
inequalities

tj(xd :S (Y;)II + ui - vi, tj(xd ~ (Ydll + ui - vi, ui ~ 0, vi ~ 0,

where ((Xi, Yi))i=l , .. . ,m is the fixed sample (and (Yi)1I is that coordinate of Yj which

corresponds to the output node IJ of N. In these inequalities the symbol tj(xd de
notes the term (which is by construction linear in the variables f, (3) that represents
the output of gate IJ for network input Xi in this system Lj. One-should note that
these terms tj(Xi) will in general be different for different j, since different linear
pieces of the activation functions at preceding gates may be used in the computation
of N for the same network input Xi. We expand the system Lj of linear inequalities
to a linear programming problem LPj in canonical form by adding the optimization
requirement

m

mmlmlze
i=l IJ output node

The algorithm LEARN employs an efficient algorithm for linear programming (e.g.
the ellipsoid algorithm, see [PS]) in order to compute in altogether polynomially
in m, sand n many steps an optimal solution for each of the linear programming
problems LP1 , ... , LPp(m). We write hj for the function from Rk into Rl that is

computed by N[f]~ for the optimal solution £, (3 of LPj. The algorithm LEARN
m

computes ~ '" Ilhj(xj) - Yilll for j = 1, . .. ,p(m). Let] be that index for which mL...J - -
i=l

this expression has a minimal value . Let f, ~ be the associated optimal solution of

LPl (i.e. N@)l computes hl). LEARN employs the previously mentioned back

wards transformation from f, j3 into values Ii for the programmable parameters of

jj such that 'V~ E Rk (jjQ.(~) = N[f.]l(~)). These values a are given as output of
the algorithm LEARN.

We refer to [M 93b] for the verification that this weight assignment a has the
property that is claimed in Theorem 1. We also refer to [M 93b] for the proof in the
more general case where the activation functions of N are piecewise polynomial .•

Reillark: The algorithm LEARN can be speeded up substantially on a parallel ma
chine. Furthermore if the individual processors of the parallel machine are allowed
to use random bits, hardly any global control is required for this parallel computa
tion. We use polynomially in m many processors. Each processor picks at random
one of the systems Lj of linear inequalit.ies and solves the corresponding linear pro
gramming problem LPj . Then the parallel machine compares in a "competitive

m

phase" the costs L: Ilhj(Xi) - ydh of the solutions hj that have been computed by
i=l - -

the individual processors. It outputs the weights a for jj that correspond to the

318 Maass

best ones of these solutions hj . If one views the number w of weights in N no longer
as a c.onstant, one sees that the number of processores that are needed is simply
exponential in w, but that the parallel computation time is polynomial in m and
w.

Acknowledgements

I would like to thank Peter Auer, Phil Long and Hal White for their helpful com
ments.

References

[BR]

[GJ]

[H]

[J]

[KV]

[KSS]

[M 93a]

[M 93b]

[Mi]

[PS]

[V]

A. Blum, R. L. Rivest, "Training a 3-node neural network is NP
complete", Proc. of the 1988 Workshop on Computational Learning
Theory, Morgan Kaufmann (San Mateo, 1988), 9 - 18

P. Goldberg, M. Jerrum, "Bounding the Vapnik-Chervonenkis dimen
sion of concept classes parameterized by real numbers", Proc. of the
6th Annual A CM Conference on Computational Learning Theory, 361
- 369.

D. Haussler, "Decision theoretic generalizations of the PAC model
for neural nets and other learning applications", Information and
Computation, vol. 100, 1992, 78 - 150

J. S. Judd, "Neural Network Design and the Complexity of Learning" ,
MIT-Press (Cambridge, 1990)

M. Kearns, L. Valiant, "Cryptographic limitations on learning
boolean formulae and finite automata", Proc. of the 21st ACM Sym
posium on Theory of Computing, 1989,433 - 444

M. J. Kearns, R. E. Schapire, L. M. Sellie, "Toward efficient agnostic
learning", Proc. of the 5th A CM Workshop on Computational Learn
ing Theory, 1992, 341 - 352

W. Maass, "Bounds for t.he c.omputational power and learning c.om
plexity of analog neural nets" (extended abstract), Proc. of the 25th
ACM Symposium on Theory of Computing, 1993,335 - 344. Journal
version submitted for publication

W. Maass, "Agnostic PAC-learning of functions on analog neural
nets" (journal version), to appear in Neural Computation.

.J. Milnor, "On the Betti numbers ofreal varieties", Proc. of the Amer
ican Math. Soc., vol. 15, 1964, 275 - 280

C. H. Papadimitrioll, K. Steiglitz, "Combinatorial Optimization: Al
gorithms and Complexity" , Prent.ice Hall (Englewood Cliffs, 1982)

L. G. Valiant, "A theory of the learnable", Comm. of the ACM, vol.
27, 1984, 1134 - 1142

