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Abstract

In the present paper, we propose an entropy method to transform
the internal representation. The entropy function is defined with
respect to the state of hidden unit, that is, internal representation.
The internal representation can be transformed by changing the
parameter « for the entropy function. Thus, the transformation is
referred to as a-transformation. The internal representation can
be transformed according to given problems. By transforming the
internal representation into the minimum entropy representation,
we can obtain kernel networks, smaller networks with explicit in-
terpretation. On the other hand, by changing appropriately the
parameter a, we can obtain intermediate internal representations
for the improved generalization. We applied the entropy method
to an autoencoder and we succeeded in obtaining kernel networks
with small internal entropy. In addition, we applied the method
to the frequency identification problem and we could obtain de-
rived networks whose generalization performance was significantly
superior to the performance by standard back-propagation.

1 Introduction

1.1 Creation of Internal Representation

One of the most important characteristics in the learning by neural networks is
that networks can create appropriate internal representations in the course of the
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learning[6]. By these internal representations, networks can solve multiple problems.
However, little attention has been given to the problem, regarding what kinds of
internal representations networks can create or more strongly what kind of internal
representation networks should make. There have been some works [2], [4] [5] and
[7] concerning the learning of the internal representation, in which the internal rep-
resentation is not automatically generated. However, there has been little discussion
regarding the quality or characteristics of obtained internal representations.

1.2 Objective

In this context, the objective of my paper is to define an entropy function for
the internal representation and to formulate an entropy method to transform the
internal representation according to given problems or targets, for exainple, the
improvement of the interpretability of networks’ behaviors or coding strategies, and
the improvement of the generalization performance. To interpret explicitly the
internal representation, and networks’ behaviors, the entropy should be minimized.
On the other hand, for the improved generalization performance, the entropy should
appropriately be changed according to given problems.

1.3 Internal Entropy

Let us explain the entropy function, used in this paper. Entropy H is defined with
respect to the hidden unit activity,

M
H=-) pilogp, (1)
=1

where p; is a normalized activity of ith hidden unit and the summation is only
over all the hidden units (M hidden units). This entropy is referred to as internal
entropy, because the entropy function is defined with respect to the internal rep-
resentation. If this entropy is minimized, only one hidden unit is turned on, while
all the other hidden units are turned off by multiple strong inhibitory connections
[3]. On the other hand, if entropy is maximized, all the hidden units are equally
activated. If entropy is sufficiently decreased, only a small number of hidden units
are turned on, while all the other units are off and not used for producing outputs.
Thus, this entropy function can be used to detect unnecessary hidden units to be
eliminated, and to construct simple networks.

1.4 Transformation of Internal Representation

Let us briefly outline our ideas of the transformation of internal representations by
the internal entropy. If the internal entropy is minimized, only one hidden unit
is activated by an input pattern. With maximum internal entropy, all the hidden
units are activated by an input pattern. Let us look at Figure 1, represcnting the
state of internal representation. If we minimize the internal entropy, we can obtain
the internal representation with minimum entropy. On the other hand, if entropy is
maximized, all the hidden units are equally activated. In addition to two extreme
representations, we can have multiple intermediate internal representations.
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Figure 1: o-Transformation of internal representation into minimum
entropy representation for the good interpretation, into maximum en-
tropy representation and intermediate representations for the improved
generalization.

For the good interpretability of the internal representation, the internal entropy
should be minimized. When the internal entropy is minimized, only one hidden
unit is turned on, while all the other units are off. Since only one input pattern
can activate the hidden unit, it is sure that we can easily understand the meaning
of the hidden unit. The hidden unit represents the information regarding the given
input pattern. In a state of minimum entropy, only a small number of hidden units
tend to be used. Thus, by minimizing the internal entropy, we can obtain the
smallest network architecture. We call these hidden units kernel hidden units, and
the derived network is referred to as kernel network. The procedure to obtain the
kernel network is called kernel hidden unit analysis.

Concerning the generalization performance, we think that to reduce the network
size is not enough to improve the generalization, as demonstrated in several exper-
imental results, for example [1], [8]. It is necessary to adjust appropriately network
architectures to given problems for the improved generalization performance. For
example, in the case of the minimum entropy representation, the generalization
performance is not expected to be improved because the minimum entropy repre-
sentation tends to be a local representation and can not appropriately represent
the similarity of input patterns. If we need the good generalization performance,
the information concerning input patterns should be distributed over scveral hid-
den units. We think that we need intermediate representations for the improved
generalization (see Figure 1).
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2 Theory and Computational Methods

2.1 Entropy Method

We have applied entropy minimization method to recurrent back-propagation3].
In this section, we formulate the entropy method for standard back-propagation.
Suppose that a network is composed of three layers: input, competitive hidden and
output layers. Hidden units are denoted by v; and input terminals by £;. Then,
connections from inputs to hidden units are denoted by w;; and connections from
hidden units to output units are denoted by W;;. A hidden unit produces an output

v = f(’u'"),

N
wi =Y wi;.
3=1

where £; is a ith element of an input pattern, N is the number of elements in the
pattern and f is the sigmoid function, defined by

where

1
flw) = 0=
An entropy function on competitive hidden layer is defined by
M
H=-) plogp, (2)
1=1
where v
bi

o

and M is the number of competitive hidden units.

Differentiating entropy function with respect to connections from input to hidden
layer, we have

3 OH _ 6_H_ ov;
6’(0,'3' - 6v,- 6w;j
= ¢ifj, (3)
where
¢ = (logps + 1)pi(1 — pi)(1 — v;). (4)

By using this ¢ function, update rules can be summarized as follows. First, for
connections from competitive hidden units to output units, only delta rule must be
used. For connections from input units to competitive hidden units, in addition to
delta rule, the ¢ function must be incorporated as

OH OF
Awij = —aﬁw,-j - ﬂaw,-,-
= a¢il; + BE;. (5)

This update rule means that in addition to the error minimization, entropy must
be minimized or maximized in the course of the learning by changing the parameter
a.
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2.2 Kernel Hidden Unit Analysis

As already mentioned, we have used the entropy method for obtaining simple net-
works, called kernel networks. Let us briefly explain the procedure of kerncl hidden
unit analysis. We have observed that by minimizing entropy, we can obtain small
network architectures, compared with original oversized network architecture. In
a state of minimum entropy, a smaller number of hidden units tended to be used
to produced targets. We call these units kernel hidden units. To determine kernel
hidden units, we have introduced the variance of input-hidden connections. The
variance of input-hidden connections is used to measure how a given hidden units
is important for producing targets correctly. This variance is used because it has
extensively been observed in our experiments that hidden units playing the impor-
tant roles tend to have the large variance, compared with other unimportant hidden
units. The variance (s?) of ith hidden unit is defined by

1 &
% M-1J,Z=1( =)

where M is the number of hidden units, w; is an average over all the counections
into 7th hidden units. With these kernel hidden units, small networks, called kernel
networks, can be obtained, whose performance with respect to the error minimiza-
tion is completely equivalent to the original networks with a large number of hidden
units. Moreover, we can easily interpret the behaviors of kernel networks, because
the network size is small. Finally, this process of obtaining a small network archi-
tecture is just the kernel hidden unit analysis.

3 Results

3.1 Transformation into Kernel Networks

We applied the method to a network in which thirty-five input, hidden and output
units were employed. The network must exactly reproduce five alphabet letters: B,
C, D, E, F, G at output units. Since the difference between these letters are small,
compared with the difference between other letters, these letters are expected to be
compressed into a smaller number of hidden units.

A minimum entropy was searched by changing the parameter «. Entropy was
decreased gradually as the parameter was increased as shown in Figure 2. By
using kernel hidden unit analysis, we observed only three major hidden units for
entropy method. Thus, a kernel network is composed of three kernel hidden units,
compared with thirty-five hidden units of the original network. On the other hand,
by using standard back-propagation, many hidden units are activated, and thus the
information upon input patterns are distributed over many hidden units. Figure
3 shows original network and kernel network for the autoencoder. As you can see
from the figure, the number of hidden units is decreased from thirty-five to three
by using the kernel hidden unit analysis.

Finally, to see clearly the meaning of hidden units, networks were constructed only
with kernel hidden units, and the outputs, generated by the networks were carefully
examined. We could see that the role of hidden units could explicitly be determined.
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Figure 2: Entropies, computed with four different initial values as a
function of the parameter « for an autoencoder.
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Figure 3: Original network and kernel network for the autoencoder.
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Table 1: Summary of experiments for networks with fifteen hidden
units. Values in this table were averages over ten initial conditions.

a(x107°) Entropy HD(%) SSE

0 0.623 6.296 4.118
-2.031 0.778 1.111
-3.250 0.785 1.687

3.2 Transformation for the Improved Generalization

As already mentioned, we think that the generalization can be improved by adjust-
ing network architectures to given problems appropriately. In this section, we try
to change the parameter o and thus to change the internal entropy to obtain the
improved generalization performance. Our main result, presented in this section
is that the generalization performance can be improved by increasing the entropy
function.

We applied our method to the identification of frequencies[8]. Networks must iden-
tify three frequencies of sine waves with phases, different from those of training
data sets. First, training data were divided into three classes with three different
frequencies (2, 4, 6). Each class has ten exemplars with sixty-four samples from
sine waves. Thus, the number of input units was sixty-four. The number of output
units was three and specific target values were assigned to each output unit, accord-
ing to the frequency of a class. Experiments were performed with different initial
values for weights, ranging between -0.5 and 0.5. The learning was considered to be
finished when the absolute differences between targets and outputs were all below
0.1. Finally, the learning rate § was set to 0.1 for all the experiments.

Let us see Table 1, showing the summary of experimental results with ten and
fifteen units by ten different initial conditions. Values in the second row in the
table could give the lowest values of Hamming distance. In the same way, values in
the third row could give the lowest SSE. The number of hidden units was fifteen.
As you can see from the table, when entropy was increased from 0.623 to 0.778,
Hamming distance was decreased greatly from 6.296 to 1.111. In addition, five out
of ten initial conditions could produce zero Hamming distance, meaning that the
generalization performance was perfect. By the criterion of SSE, when entropy was
increased from 0.623 to 0.785, SSE was decreased from 4.118 to 1.687. All the
results are statistical significant. These results show that by using entropy method,
the generalization performance was significantly improved.

4 Conclusion

In this paper, we have proposed an entropy method to transform the internal rep-
resentation. The internal entropy has been defined with respect to the hidden unit
activity or the internal representation. If the internal entropy is minimized, only
one hidden unit tends to respond to a specific input pattern, thus, the internal rep-
resentation is as local as possible. In this case, it is easy to understand the meaning
or the function of the hidden unit, because the hidden unit tends to respond to
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only one specific input pattern. However, we have observed that in the case of the
minimum entropy representation, the generalization performance is not improved.
To obtain the improved generalization performance, the information regarding an
input pattern should be distributed over several hidden units. We have applied the
entropy method to an autoencoder. In this problem, we have observed that by mini-
mizing the internal entropy, we can obtain smaller networks, called kernel networks.
These kernel networks are so small that we can easily understand the meaning of
the internal representation or networks’ behaviors. Then, we have attempted to
change the internal entropy for the improve generalization. We have observed that
up to a certain point, the generalization performance can be improved by increasing
the internal entropy. Finally, if relations between kernel and intermediate networks
can explicitly be determined, we can obtain networks with the good interpretability
and the improved generalization performance.
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