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Abstract 

Learning to recognize or predict sequences using long-term con­
text has many applications. However, practical and theoretical 
problems are found in training recurrent neural networks to per­
form tasks in which input/output dependencies span long intervals. 
Starting from a mathematical analysis of the problem, we consider 
and compare alternative algorithms and architectures on tasks for 
which the span of the input/output dependencies can be controlled. 
Results on the new algorithms show performance qualitatively su­
perior to that obtained with backpropagation. 

1 Introduction 

Recurrent neural networks have been considered to learn to map input sequences to 
output sequences. Machines that could efficiently learn such tasks would be useful 
for many applications involving sequence prediction, recognition or production. 

However, practical difficulties have been reported in training recurrent neural net­
works to perform tasks in which the temporal contingencies present in the in­
put/output sequences span long intervals. In fact, we can prove that dynamical 
systems such as recurrent neural networks will be increasingly difficult to train with 
gradient descent as the duration of the dependencies to be captured increases. A 
mathematical analysis of the problem shows that either one of two conditions arises 
in such systems. In the first case, the dynamics of the network allow it to reliably 
store bits of information (with bounded input noise), but gradients (with respect 
to an error at a given time step) vanish exponentially fast as one propagates them 
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backward in time. In the second case, the gradients can flow backward but the sys­
tem is locally unstable and cannot reliably store bits of information in the presence 
of input noise. 

In consideration of the above problem and the understanding brought by the theo­
retical analysis, we have explored and compared several alternative algorithms and 
architectures. Comparative experiments were performed on artificial tasks on which 
the span of the input/output dependencies can be controlled. In all cases, a dura­
tion parameter was varied, from T/2 to T, to avoid short sequences on which the 
algorithm could much more easily learn. These tasks require learning to latch, i.e. 
store bits of information for arbitrary durations (which may vary from example to 
example). Such tasks cannot be performed by Time Delay Neural Networks or by 
recurrent networks whose memories are gradually lost with time constants that are 
fixed by the parameters of the network. 

Of all the alternatives to gradient descent that we have explored, an approach based 
on a probabilistic interpretation of a discrete state space, similar to hidden Markov 
models (HMMs), yielded the most interesting results. 

2 A Difficult Problem of Error Propagation 

Consider a non-autonomous discrete-time system with additive inputs, such as a 
recurrent neural network a with a continuous activation function: 

at = M(at-d + Ut 

and the corresponding autonomous dynamics 

at = M(at-d 

(1) 

(2) 

where M is a nonlinear map (which may have tunable parameters such as network 
weights), and at E R n and Ut E R m are vectors representing respectively the system 
state and the external input at time t. 

In order to latch a bit of state information one wants to restrict the values of the 
system activity at to a subset S of its domain. In this way, it will be possible to 
later interpret at in at least two ways: inside S and outside S. To make sure that at 
remains in such a region, the system dynamics can be chosen such that this region 
is the basin of attraction of an attractor X (or of an attractor in a sub-manifold or 
subspace of at's domain). To "erase" that bit of information, the inputs may push 
the system activity at out of this basin of attraction and possibly into another one. 

In (Bengio, Simard, & Frasconi, 1994) we show that only two conditions can arise 
when using hyperbolic attractors to latch bits of information in such a system. 
Either the system is very sensitive to noise, or the derivatives of the cost at time t 
with respect to the system activations ao converge exponentially to 0 as t increases. 
This situation is the essential reason for the difficulty in using gradient descent to 
train a dynamical system to capture long-term dependencies in the input/output 
sequences. 

A first theorem can be used to show that when the state at is in a region where 
IM'I > 1, then small perturbations grow exponentially, which can yield to a loss of 
the information stored in the dynamics of the system: 

Theorem 1 A ssume x is a point of R n such that there exists an open sphere U (x) 
centered on x for which IM'(z)1 > 1 for all z E U(x). Then there exist Y E U(x) 
such that IIM(x) - M(y) I > Ilx - YII· 
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A second theorem shows that when the state at is in a region where IM'I < 1, the 
gradients propagated backwards in time vanish exponentially fast: 

Theorem 2 If the input Ut is such that a system remains robustly latched 
nM'(adl < 1) on attmctor X after time 0, then g:~ -t 0 as t -t 00. 

See proofs in (Bengio, Simard, & Frasconi, 1994). A consequence of these results 
is that it is generally very difficult to train a parametric dynamical system (such 
as a recurrent neural network) to learn long-term dependencies using gradient de­
scent. Based on the understanding brought by this analysis, we have explored and 
compared several alternative algorithms and architectures. 

3 Global Search Methods 

Global search methods such as simulated annealing can be applied to this prob­
lem, but they are generally very slow. We implemented the simulated annealing 
algorithm presented in (Corana, Marchesi, Martini, & Ridella, 1987) for optimizing 
functions of continuous variables. This is a "batch learning" algorithm (updating 
parameters after all examples of the training set have been seen). It performs a cy­
cle of random moves, each along one coordinate (parameter) direction. Each point 
is accepted or rejected according to the Metropolis criterion (Kirkpatrick, Gelatt, 
& Vecchi, 1983). The simulated annealing algorithm is very robust with respect 
to local minima and long plateaus. Another global search method evaluated in 
our experiments is a multi-grid random search. The algorithm tries random points 
around the current solution (within a hyperrectangle of decreasing size) and accepts 
only those that reduce the error . Thus it is resistant to problems of plateaus but 
not as much resistant to problems of local minima. Indeed, we found the multi-grid 
random search to be much faster than simulated annealing but to fail on the parity 
problem, probably because of local minima. 

4 Time Weighted Pseudo-Newton 

The time-weighted pseudo-Newton algorithm uses second order derivatives of the 
cost with respect to each of the instantiations of a weight at different time steps to 
try correcting for the vanishing gradient problem. The weight update for a weight 
Wi is computed as follows: 

(3) 

where Wit is the instantiation for time t of parameter Wi, 1} is a global learning 
rate and C(p) is the cost for pattern p. In this way, each (temporal) contribution 
to ~Wi(p) is weighted by the inverse curvature with respect to Wit . Like for the 
pseudo-Newton algorithm of Becker and Le Cun (1988) we prefer using a diagonal 
approximation of the Hessian which is cheap to compute and guaranteed to be 
positive definite. 

The constant J1 is introduced to prevent ~w from becoming very large (when I &;C~p) I 
W.! 

is very small). We found the performance of this algorithm to be better than the 
regular pseudo-Newton algorithm, which is better than the simple stochastic back­
propagation algorithm, but all of these algorithms perform worse and worse as the 
length of the sequences is increased. 
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5 Discrete Error Propagation 

The discrete error propagation algorithm replaces sigmoids in the network by dis­
crete threshold units and attempts to propagate discrete error information back­
wards in time. The basic idea behind the algorithm is that for a simple discrete 
element such as a threshold unit or a latch, one can write down an error propagation 
rule that prescribes desired changes in the values of the inputs in order to obtain 
certain changes in the values of the outputs. In the case of a threshold unit, such 
a rule assumes that the desired change for the output of the unit is discrete (+2, 
o or -2). However, error information propagated backwards to such as unit might 
have a continuous value. A stochastic process is used to convert this continuous 
value into an appropriate discrete desired change. In the case of a self-loop, a clear 
advantage of this algorithm over gradient back-propagation through sigmoid units 
is that the error information does not vanish as it is repeatedly propagated back­
wards in time around the loop, even though the unit can robustly store a bit of 
information. Details of the algorithm will appear in (Bengio, Simard, & Frasconi, 
1994). This algorithm performed better than the time-weighted pseudo-Newton, 
pseudo-Newton and back-propagation algorithms but the learning curve appeared 
very irregular, suggesting that the algorithm is doing a local random search. 

6 An EM Approach to Target Propagation 

The most promising of the algorithms we studied was derived from the idea of 
propagating targets instead of gradients. For this paper we restrict ourselves to 
sequence classification. We assume a finite-state learning system with the state qt 
at time t taking on one of n values. Different final states for each class are used 
as targets. The system is given a probabilistic interpretation and we assume a 
Markovian conditional independence model. As in HMMs, the system propagates 
forward a discrete distribution over the n states. Transitions may be constrained 
so that each state j has a defined set of successors Sj. 

Ut 

Stat~ L State 

_;_·· .~_.~_1 ..... 0_j1_ ••• ( .. ·• •• _ .•.. __ n_e--lt/\rK : 

Figure 1: The proposed architecture 

Learning is formulated as a maximum likelihood problem with missing data. Missing 
variables, over which an expectation is taken, are the paths in state-space. The 
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EM (Expectation/Maximization) or GEM (Generalized EM) algorithms (Dempster, 
Laird., & Rubin, 1977) can be used to help decoupling the influence of different 
hypothetical paths in state-space. The estimation step of EM requires propagating 
backward a discrete distribution of targets. In contrast to HMMs, where parameters 
are adjusted in an unsupervised learning framework, we use EM in a supervised 
fashion. This new perspective has been successful in training static models (Jordan 
& Jacobs, 1994). 

Transition probabilities, conditional on the current input, can be computed by a 
parametric function such as a layer of a neural network with softmax units. We pro­
pose a modular architecture with one subnetwork Nj for each state (see Figure 1). 
Each subnetwork is feedforward, takes as input a continuous vector of features Ut 
and has one output for each successor state, interpreted as P(qt = i I qt-l = j, Ut; 0), 
(j = 1, ... , n, i E Sj). 0 is a set of tunable parameters. Using a Markovian assump­
tion, the distribution over states at time t is thus obtained as a linear combination 
of the outputs of the subnetworks, gated by the previously computed distribution: 

P(qt = i lui; 0) = L P(qt-l = j lui-I; O)P(qt = i I qt-l = j, Ut; 0) (4) 
j 

where ui is a subsequence of inputs from time 1 to t inclusively. The training 
algorithm looks for parameters 0 of the system that maximize the likelihood L of 
falling in the "correct" state at the end of each sequence: 

L(O) = II P(qTp = qj,p I uip; 0) (5) 
p 

where p ranges over training sequences, Tp the length of the pth training sequence, 
and qj, the desired state at time Tp. 

p 

An auxiliary function Q(O, Ok) is constructed by introducing as hidden variables the 
whole state sequence, hence the complete likelihood function is defined as follows: 

Lc(O) = IIp(qip luip;O) (6) 
p 

and 
(7) 

where at the k+lth EM (or GEM) iteration, Ok+l is chosen to maximize (or increase) 
the auxiliary function Q with respect to O. 

If the inputs are quantized and the subnetworks perform a simple look-up in a table 

of probabilities, then the EM algorithm can be used, i.e., aQ~/k) = 0 can be solved 
analytically. If the networks have non-linearities, (e.g., with hidden units and a 
softmax at their output to constrain the outputs to sum to 1), then one can use 
the GEM algorithm (which simply increases Q, for example with gradient ascent) 
or directly perform (preferably stochastic) gradient ascent on the likelihood. 

An extra term was introduced in the optimization criterion when we found that in 
many cases the target information would not propagate backwards (or would be 
diffused over all the states). These experiments confirmed previous results indicat­
ing a general difficulty of training fully connected HMMs, with the EM algorithm 
converging very often to poor local maxima of the likelihood. In an attempt to 
understand better the phenomenon, we looked at the quantities propagated for­
ward and the quantities propagated backward (representing credit or blame) in the 
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training algorithm. We found a diffusion of credit or blame occurring when the 
forward maps (i.e. the matrix of transition probabilities) at each time step are such 
that many inputs map to a few outputs, i.e., when the ratio of a small volume in 
the image of the map with respect to the corresponding volume in the domain is 
small. This ratio is the absolute value of the determinant of the Jacobian of the 
map. Hence, using an optimization criterion that incorporates the maximization of 
the average magnitude of the determinant of the transition matrices, this algorithm 
performs much better than the other algorithms. Two other tricks were found to 
be important to help convergence and reduce the problem of diffusion of credit. 
The first idea is to use whenever possible a structured model with a sparse con­
nectivity matrix, thus introducing some prior knowledge about the state-space. For 
example, applications of HMMs to speech recognition always rely on such structured 
topologies. We could reduce connectivity in the transition matrix for the 2-sequence 
problem (see next section for its definition) by splitting some of the nodes into two 
subsets, each specializing on one of the sequence classes. However, sometimes it is 
not possible to introduce such constraints, such as in the parity problem. Another 
trick that drastically improved performance was to use stochastic gradient ascent in 
a way that helps the training algorithm get out of local optima. The learning rate 
is decreased when the likelihood improves but it is increased when the likelihood 
remains flat (the system is stuck in a plateau or local optimum). 

As the results in the next section show, the performances obtained with this algo­
rithm are much better than those obtained with the other algorithms on the two 
simple test problems that were considered. 

7 Experimental Results 

We present here results on two problems for which one can control the span of 
input/output dependencies. The 2-sequence problem is the following: classify an 
input sequence, at the end of the sequence, in one of two types, when only the first 
N elements (N = 3 in our experiments) of this sequence carry information about 
the sequence class. Uniform noise is added to the sequence. For the first 6 methods 
(see Tables 1 to 4), we used a fully connected recurrent network with 5 units (with 
25 free parameters). For the EM algorithm, we used a 7 -state system with a sparse 
connectivity matrix (an initial state, and two separate left-to-right submodels of 
three states each to model the two types of sequences). 

The parity problem consists in producing the parity of an input sequence of 1 's and 
-l's (i.e., a 1 should be produced at the final output if and only if the number of 
1 's in the input is odd). The target is only given at the end of the sequence. For 
the first 6 methods we used a minimal size network (1 input, 1 hidden, 1 output, 
7 free parameters). For the EM algorithm, we used a 2-state system with a full 
connectivity matrix. 

Initial parameters were chosen randomly for each trial. Noise added to the sequence 
was also uniformly distributed and chosen independently for each training sequence. 
We considered two criteria: (1) the average classification error at the end of training, 
i.e., after a stopping criterion has been met (when either some allowed number of 
function evaluations has been performed or the task has been learned), (2) the 
average number of function evaluations needed to reach the stopping criterion. 

In the tables, "p-n" stands for pseudo-Newton. Each column corresponds to a value 
of the maximum sequence length T for a given set of trials. The sequence length for 
a particular training sequence was picked randomly within T/2 and T. Numbers 
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reported are averages over 20 or more trials. 

8 Conclusion 

Recurrent networks and other parametric dynamical systems are very powerful in 
their ability to represent and use context. However, theoretical and experimental 
evidence shows the difficulty of assigning credit through many time steps, which 
is required in order to learn to use and represent context. This paper studies this 
fundamental problem and proposes alternatives to the backpropagation algorithm 
to perform such learning tasks. Experiments show these alternative approaches 
to perform significantly better than gradient descent. The behavior of these algo­
rithms yields a better understanding of the central issue of learning to use context, 
or assigning credit through many transformations. Although all of the alterna­
tive algorithms presented here showed some improvement with respect to standard 
stochastic gradient descent, a clear winner in our comparison was an algorithm 
based on the EM algorithm and a probabilistic interpretation of the system dynam­
ics. However, experiments on more challenging tasks will have to be conducted to 
confirm those results. Furthermore, several extensions of this model are possible, 
for example allowing both inputs and outputs, with supervision on outputs rather 
than on states. Finally, similarly to the work we performed for recurrent networks 
trained with gradient descent, it would be very important to analyze theoretically 
the problems of propagation of credit encountered in training such Markov models. 
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Table 1: Final classification error for the 2-sequence problem wrt sequence length 

ac -prop 
p-n 

time-weighted p-n 
multigrid 

discrete err. prop. 
simulated anneal. 

EM 

2 3 10 25 
o 0 9 34 
2 6 1 3 
6 16 29 23 
6 0 7 4 
o 0 0 0 

29 
14 
6 

22 
11 
o 

Table 2: # sequence presentations for the 2-sequence problem wrt sequence length 

ac -prop 
p-n 

time-weighted p-n 
multigrid 

discrete err. prop. 
simulated anneal. 

EM 

. e 
5.1e2 
5.4e2 
4.1e3 
6.6e2 
2.0e5 
3.2e3 

. e 
1.1e3 
4.3e2 
5.8e3 
1.3e3 
3.ge4 
4.0e3 

. e 
1.ge3 
2.4e3 
2.5e3 
2.1e3 
8.2e4 
2.ge3 

. e 
2.6e3 
2.ge3 
3.ge3 
2.1e3 
7.7e4 
3.2e3 

. e 
2.5e3 
2.7e3 
6.4e3 
2.1e3 
4.3e4 
2.ge3 

Table 3: Final classification error for the parity problem wrt sequence length 

3 5 10 20 50 100 500 
back-prop ~ ~U 41 ~~ 43-

p-n 3 25 41 44 40 47 
time-weighted p-n 26 39 43 44 

multigrid 15 44 45 
discrete err. prop. 0 0 0 5 
simulated anneal. 3 10 0 

EM 0 6 0 14 0 12 

Table 4: # sequence presentations for the parity problem wrt sequence length 

3 5 9 20 50 100 500 
back-prop 3.6e3 5.5e3 8.7e3 1.6e4 1.1e4 

p-n 2.5e2 8.ge3 8.ge3 7 .7e4 1.1e4 1.le5 
time-weighted p-n 4.5e4 7.0e4 3.4e4 8.1e4 

multigrid 4.2e3 1.5e4 3.1e4 
discrete err. prop. 5.0e3 7.ge3 1.5e4 5.4e4 
simulated anneal. 5.1e5 1.2e6 8.1e5 

EM 2.3e3 1.5e3 1.3e3 3.2e3 2.6e3 3.4e3 


