
Credit Assignment through Time:
Alternatives to Backpropagation

Yoshua Bengio *
Dept. Informatique et

Recherche Operationnelle
Universite de Montreal
Montreal, Qc H3C-3J7

Paolo Frasconi
Dip. di Sistemi e Informatica

Universita di Firenze
50139 Firenze (Italy)

Abstract

Learning to recognize or predict sequences using long-term con­
text has many applications. However, practical and theoretical
problems are found in training recurrent neural networks to per­
form tasks in which input/output dependencies span long intervals.
Starting from a mathematical analysis of the problem, we consider
and compare alternative algorithms and architectures on tasks for
which the span of the input/output dependencies can be controlled.
Results on the new algorithms show performance qualitatively su­
perior to that obtained with backpropagation.

1 Introduction

Recurrent neural networks have been considered to learn to map input sequences to
output sequences. Machines that could efficiently learn such tasks would be useful
for many applications involving sequence prediction, recognition or production.

However, practical difficulties have been reported in training recurrent neural net­
works to perform tasks in which the temporal contingencies present in the in­
put/output sequences span long intervals. In fact, we can prove that dynamical
systems such as recurrent neural networks will be increasingly difficult to train with
gradient descent as the duration of the dependencies to be captured increases. A
mathematical analysis of the problem shows that either one of two conditions arises
in such systems. In the first case, the dynamics of the network allow it to reliably
store bits of information (with bounded input noise), but gradients (with respect
to an error at a given time step) vanish exponentially fast as one propagates them

·also, AT&T Bell Labs, Holmdel, NJ 07733

7S

76 Bengio and Frasconi

backward in time. In the second case, the gradients can flow backward but the sys­
tem is locally unstable and cannot reliably store bits of information in the presence
of input noise.

In consideration of the above problem and the understanding brought by the theo­
retical analysis, we have explored and compared several alternative algorithms and
architectures. Comparative experiments were performed on artificial tasks on which
the span of the input/output dependencies can be controlled. In all cases, a dura­
tion parameter was varied, from T/2 to T, to avoid short sequences on which the
algorithm could much more easily learn. These tasks require learning to latch, i.e.
store bits of information for arbitrary durations (which may vary from example to
example). Such tasks cannot be performed by Time Delay Neural Networks or by
recurrent networks whose memories are gradually lost with time constants that are
fixed by the parameters of the network.

Of all the alternatives to gradient descent that we have explored, an approach based
on a probabilistic interpretation of a discrete state space, similar to hidden Markov
models (HMMs), yielded the most interesting results.

2 A Difficult Problem of Error Propagation

Consider a non-autonomous discrete-time system with additive inputs, such as a
recurrent neural network a with a continuous activation function:

at = M(at-d + Ut

and the corresponding autonomous dynamics

at = M(at-d

(1)

(2)

where M is a nonlinear map (which may have tunable parameters such as network
weights), and at E R n and Ut E R m are vectors representing respectively the system
state and the external input at time t.

In order to latch a bit of state information one wants to restrict the values of the
system activity at to a subset S of its domain. In this way, it will be possible to
later interpret at in at least two ways: inside S and outside S. To make sure that at
remains in such a region, the system dynamics can be chosen such that this region
is the basin of attraction of an attractor X (or of an attractor in a sub-manifold or
subspace of at's domain). To "erase" that bit of information, the inputs may push
the system activity at out of this basin of attraction and possibly into another one.

In (Bengio, Simard, & Frasconi, 1994) we show that only two conditions can arise
when using hyperbolic attractors to latch bits of information in such a system.
Either the system is very sensitive to noise, or the derivatives of the cost at time t
with respect to the system activations ao converge exponentially to 0 as t increases.
This situation is the essential reason for the difficulty in using gradient descent to
train a dynamical system to capture long-term dependencies in the input/output
sequences.

A first theorem can be used to show that when the state at is in a region where
IM'I > 1, then small perturbations grow exponentially, which can yield to a loss of
the information stored in the dynamics of the system:

Theorem 1 A ssume x is a point of R n such that there exists an open sphere U (x)
centered on x for which IM'(z)1 > 1 for all z E U(x). Then there exist Y E U(x)
such that IIM(x) - M(y) I > Ilx - YII·

Credit Assignment through Time: Alternatives to Backpropagation 77

A second theorem shows that when the state at is in a region where IM'I < 1, the
gradients propagated backwards in time vanish exponentially fast:

Theorem 2 If the input Ut is such that a system remains robustly latched
nM'(adl < 1) on attmctor X after time 0, then g:~ -t 0 as t -t 00.

See proofs in (Bengio, Simard, & Frasconi, 1994). A consequence of these results
is that it is generally very difficult to train a parametric dynamical system (such
as a recurrent neural network) to learn long-term dependencies using gradient de­
scent. Based on the understanding brought by this analysis, we have explored and
compared several alternative algorithms and architectures.

3 Global Search Methods

Global search methods such as simulated annealing can be applied to this prob­
lem, but they are generally very slow. We implemented the simulated annealing
algorithm presented in (Corana, Marchesi, Martini, & Ridella, 1987) for optimizing
functions of continuous variables. This is a "batch learning" algorithm (updating
parameters after all examples of the training set have been seen). It performs a cy­
cle of random moves, each along one coordinate (parameter) direction. Each point
is accepted or rejected according to the Metropolis criterion (Kirkpatrick, Gelatt,
& Vecchi, 1983). The simulated annealing algorithm is very robust with respect
to local minima and long plateaus. Another global search method evaluated in
our experiments is a multi-grid random search. The algorithm tries random points
around the current solution (within a hyperrectangle of decreasing size) and accepts
only those that reduce the error . Thus it is resistant to problems of plateaus but
not as much resistant to problems of local minima. Indeed, we found the multi-grid
random search to be much faster than simulated annealing but to fail on the parity
problem, probably because of local minima.

4 Time Weighted Pseudo-Newton

The time-weighted pseudo-Newton algorithm uses second order derivatives of the
cost with respect to each of the instantiations of a weight at different time steps to
try correcting for the vanishing gradient problem. The weight update for a weight
Wi is computed as follows:

(3)

where Wit is the instantiation for time t of parameter Wi, 1} is a global learning
rate and C(p) is the cost for pattern p. In this way, each (temporal) contribution
to ~Wi(p) is weighted by the inverse curvature with respect to Wit . Like for the
pseudo-Newton algorithm of Becker and Le Cun (1988) we prefer using a diagonal
approximation of the Hessian which is cheap to compute and guaranteed to be
positive definite.

The constant J1 is introduced to prevent ~w from becoming very large (when I &;C~p) I
W.!

is very small). We found the performance of this algorithm to be better than the
regular pseudo-Newton algorithm, which is better than the simple stochastic back­
propagation algorithm, but all of these algorithms perform worse and worse as the
length of the sequences is increased.

78 Bengio and Frasconi

5 Discrete Error Propagation

The discrete error propagation algorithm replaces sigmoids in the network by dis­
crete threshold units and attempts to propagate discrete error information back­
wards in time. The basic idea behind the algorithm is that for a simple discrete
element such as a threshold unit or a latch, one can write down an error propagation
rule that prescribes desired changes in the values of the inputs in order to obtain
certain changes in the values of the outputs. In the case of a threshold unit, such
a rule assumes that the desired change for the output of the unit is discrete (+2,
o or -2). However, error information propagated backwards to such as unit might
have a continuous value. A stochastic process is used to convert this continuous
value into an appropriate discrete desired change. In the case of a self-loop, a clear
advantage of this algorithm over gradient back-propagation through sigmoid units
is that the error information does not vanish as it is repeatedly propagated back­
wards in time around the loop, even though the unit can robustly store a bit of
information. Details of the algorithm will appear in (Bengio, Simard, & Frasconi,
1994). This algorithm performed better than the time-weighted pseudo-Newton,
pseudo-Newton and back-propagation algorithms but the learning curve appeared
very irregular, suggesting that the algorithm is doing a local random search.

6 An EM Approach to Target Propagation

The most promising of the algorithms we studied was derived from the idea of
propagating targets instead of gradients. For this paper we restrict ourselves to
sequence classification. We assume a finite-state learning system with the state qt
at time t taking on one of n values. Different final states for each class are used
as targets. The system is given a probabilistic interpretation and we assume a
Markovian conditional independence model. As in HMMs, the system propagates
forward a discrete distribution over the n states. Transitions may be constrained
so that each state j has a defined set of successors Sj.

Ut

Stat~ L State

;·· .~_.~_1 0_j1_ ••• (.. ·• •• _ .•.. __ n_e--lt/\rK :

Figure 1: The proposed architecture

Learning is formulated as a maximum likelihood problem with missing data. Missing
variables, over which an expectation is taken, are the paths in state-space. The

Credit Assignment through Time: Alternatives to Backpropagation 79

EM (Expectation/Maximization) or GEM (Generalized EM) algorithms (Dempster,
Laird., & Rubin, 1977) can be used to help decoupling the influence of different
hypothetical paths in state-space. The estimation step of EM requires propagating
backward a discrete distribution of targets. In contrast to HMMs, where parameters
are adjusted in an unsupervised learning framework, we use EM in a supervised
fashion. This new perspective has been successful in training static models (Jordan
& Jacobs, 1994).

Transition probabilities, conditional on the current input, can be computed by a
parametric function such as a layer of a neural network with softmax units. We pro­
pose a modular architecture with one subnetwork Nj for each state (see Figure 1).
Each subnetwork is feedforward, takes as input a continuous vector of features Ut
and has one output for each successor state, interpreted as P(qt = i I qt-l = j, Ut; 0),
(j = 1, ... , n, i E Sj). 0 is a set of tunable parameters. Using a Markovian assump­
tion, the distribution over states at time t is thus obtained as a linear combination
of the outputs of the subnetworks, gated by the previously computed distribution:

P(qt = i lui; 0) = L P(qt-l = j lui-I; O)P(qt = i I qt-l = j, Ut; 0) (4)
j

where ui is a subsequence of inputs from time 1 to t inclusively. The training
algorithm looks for parameters 0 of the system that maximize the likelihood L of
falling in the "correct" state at the end of each sequence:

L(O) = II P(qTp = qj,p I uip; 0) (5)
p

where p ranges over training sequences, Tp the length of the pth training sequence,
and qj, the desired state at time Tp.

p

An auxiliary function Q(O, Ok) is constructed by introducing as hidden variables the
whole state sequence, hence the complete likelihood function is defined as follows:

Lc(O) = IIp(qip luip;O) (6)
p

and
(7)

where at the k+lth EM (or GEM) iteration, Ok+l is chosen to maximize (or increase)
the auxiliary function Q with respect to O.

If the inputs are quantized and the subnetworks perform a simple look-up in a table

of probabilities, then the EM algorithm can be used, i.e., aQ~/k) = 0 can be solved
analytically. If the networks have non-linearities, (e.g., with hidden units and a
softmax at their output to constrain the outputs to sum to 1), then one can use
the GEM algorithm (which simply increases Q, for example with gradient ascent)
or directly perform (preferably stochastic) gradient ascent on the likelihood.

An extra term was introduced in the optimization criterion when we found that in
many cases the target information would not propagate backwards (or would be
diffused over all the states). These experiments confirmed previous results indicat­
ing a general difficulty of training fully connected HMMs, with the EM algorithm
converging very often to poor local maxima of the likelihood. In an attempt to
understand better the phenomenon, we looked at the quantities propagated for­
ward and the quantities propagated backward (representing credit or blame) in the

80 Bengio and Frasconi

training algorithm. We found a diffusion of credit or blame occurring when the
forward maps (i.e. the matrix of transition probabilities) at each time step are such
that many inputs map to a few outputs, i.e., when the ratio of a small volume in
the image of the map with respect to the corresponding volume in the domain is
small. This ratio is the absolute value of the determinant of the Jacobian of the
map. Hence, using an optimization criterion that incorporates the maximization of
the average magnitude of the determinant of the transition matrices, this algorithm
performs much better than the other algorithms. Two other tricks were found to
be important to help convergence and reduce the problem of diffusion of credit.
The first idea is to use whenever possible a structured model with a sparse con­
nectivity matrix, thus introducing some prior knowledge about the state-space. For
example, applications of HMMs to speech recognition always rely on such structured
topologies. We could reduce connectivity in the transition matrix for the 2-sequence
problem (see next section for its definition) by splitting some of the nodes into two
subsets, each specializing on one of the sequence classes. However, sometimes it is
not possible to introduce such constraints, such as in the parity problem. Another
trick that drastically improved performance was to use stochastic gradient ascent in
a way that helps the training algorithm get out of local optima. The learning rate
is decreased when the likelihood improves but it is increased when the likelihood
remains flat (the system is stuck in a plateau or local optimum).

As the results in the next section show, the performances obtained with this algo­
rithm are much better than those obtained with the other algorithms on the two
simple test problems that were considered.

7 Experimental Results

We present here results on two problems for which one can control the span of
input/output dependencies. The 2-sequence problem is the following: classify an
input sequence, at the end of the sequence, in one of two types, when only the first
N elements (N = 3 in our experiments) of this sequence carry information about
the sequence class. Uniform noise is added to the sequence. For the first 6 methods
(see Tables 1 to 4), we used a fully connected recurrent network with 5 units (with
25 free parameters). For the EM algorithm, we used a 7 -state system with a sparse
connectivity matrix (an initial state, and two separate left-to-right submodels of
three states each to model the two types of sequences).

The parity problem consists in producing the parity of an input sequence of 1 's and
-l's (i.e., a 1 should be produced at the final output if and only if the number of
1 's in the input is odd). The target is only given at the end of the sequence. For
the first 6 methods we used a minimal size network (1 input, 1 hidden, 1 output,
7 free parameters). For the EM algorithm, we used a 2-state system with a full
connectivity matrix.

Initial parameters were chosen randomly for each trial. Noise added to the sequence
was also uniformly distributed and chosen independently for each training sequence.
We considered two criteria: (1) the average classification error at the end of training,
i.e., after a stopping criterion has been met (when either some allowed number of
function evaluations has been performed or the task has been learned), (2) the
average number of function evaluations needed to reach the stopping criterion.

In the tables, "p-n" stands for pseudo-Newton. Each column corresponds to a value
of the maximum sequence length T for a given set of trials. The sequence length for
a particular training sequence was picked randomly within T/2 and T. Numbers

Credit Assignment through Time: Alternatives to Backpropagation 81

reported are averages over 20 or more trials.

8 Conclusion

Recurrent networks and other parametric dynamical systems are very powerful in
their ability to represent and use context. However, theoretical and experimental
evidence shows the difficulty of assigning credit through many time steps, which
is required in order to learn to use and represent context. This paper studies this
fundamental problem and proposes alternatives to the backpropagation algorithm
to perform such learning tasks. Experiments show these alternative approaches
to perform significantly better than gradient descent. The behavior of these algo­
rithms yields a better understanding of the central issue of learning to use context,
or assigning credit through many transformations. Although all of the alterna­
tive algorithms presented here showed some improvement with respect to standard
stochastic gradient descent, a clear winner in our comparison was an algorithm
based on the EM algorithm and a probabilistic interpretation of the system dynam­
ics. However, experiments on more challenging tasks will have to be conducted to
confirm those results. Furthermore, several extensions of this model are possible,
for example allowing both inputs and outputs, with supervision on outputs rather
than on states. Finally, similarly to the work we performed for recurrent networks
trained with gradient descent, it would be very important to analyze theoretically
the problems of propagation of credit encountered in training such Markov models.

Acknowledgements

We wish to emphatically thank Patrice Simard, who collaborated with us on the
analysis of the theoretical difficulties in learning long-term dependencies, and on
the discrete error propagation algorithm.

References

S. Becker and Y. Le Cun. (1988) Improving the convergence of back-propagation
learning with second order methods, Proc. of the 1988 Connectionist Models Sum­
mer School, (eds. Touretzky, Hinton and Sejnowski), Morgan Kaufman, pp. 29-37.

Y. Bengio, P. Simard, and P. Frasconi. (1994) Learning long-term dependencies
with gradient descent is difficult, IEEE Trans. Neural Networks, (in press).

A. Corana, M. Marchesi, C. Martini, and S. Ridella. (1987) Minimizing multimodal
functions of continuous variables with the simulated annealing algorithm, A CM
Transactions on Mathematical Software, vol. 13, no. 13, pp. 262-280.

A.P. Dempster, N.M. Laird, and D.B. Rubin. (1977) Maximum-likelihood from
incomplete data via the EM algorithm, J. of Royal Stat. Soc., vol. B39, pp. 1-38.

M.1. Jordan and R.A. Jacobs. (1994) Hierarchical mixtures of experts and the EM
algorithm, Neural Computation, (in press).

S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchio (1983) Optimization by simulated
annealing, Science 220, 4598, pp.671-680.

82 Bengio and Frasconi

Table 1: Final classification error for the 2-sequence problem wrt sequence length

ac -prop
p-n

time-weighted p-n
multigrid

discrete err. prop.
simulated anneal.

EM

2 3 10 25
o 0 9 34
2 6 1 3
6 16 29 23
6 0 7 4
o 0 0 0

29
14
6

22
11
o

Table 2: # sequence presentations for the 2-sequence problem wrt sequence length

ac -prop
p-n

time-weighted p-n
multigrid

discrete err. prop.
simulated anneal.

EM

. e
5.1e2
5.4e2
4.1e3
6.6e2
2.0e5
3.2e3

. e
1.1e3
4.3e2
5.8e3
1.3e3
3.ge4
4.0e3

. e
1.ge3
2.4e3
2.5e3
2.1e3
8.2e4
2.ge3

. e
2.6e3
2.ge3
3.ge3
2.1e3
7.7e4
3.2e3

. e
2.5e3
2.7e3
6.4e3
2.1e3
4.3e4
2.ge3

Table 3: Final classification error for the parity problem wrt sequence length

3 5 10 20 50 100 500
back-prop ~ ~U 41 ~~ 43-

p-n 3 25 41 44 40 47
time-weighted p-n 26 39 43 44

multigrid 15 44 45
discrete err. prop. 0 0 0 5
simulated anneal. 3 10 0

EM 0 6 0 14 0 12

Table 4: # sequence presentations for the parity problem wrt sequence length

3 5 9 20 50 100 500
back-prop 3.6e3 5.5e3 8.7e3 1.6e4 1.1e4

p-n 2.5e2 8.ge3 8.ge3 7 .7e4 1.1e4 1.le5
time-weighted p-n 4.5e4 7.0e4 3.4e4 8.1e4

multigrid 4.2e3 1.5e4 3.1e4
discrete err. prop. 5.0e3 7.ge3 1.5e4 5.4e4
simulated anneal. 5.1e5 1.2e6 8.1e5

EM 2.3e3 1.5e3 1.3e3 3.2e3 2.6e3 3.4e3

