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Abstract 

MacKay's Bayesian framework for backpropagation is conceptually 
appealing as well as practical. It automatically adjusts the weight 
decay parameters during training, and computes the evidence for 
each trained network. The evidence is proportional to our belief 
in the model. The networks with highest evidence turn out to 
generalise well. In this paper, the framework is extended to pruned 
nets, leading to an Ockham Factor for "tuning the architecture 
to the data". A committee of networks, selected by their high 
evidence, is a natural Bayesian construction. The evidence of a 
committee is computed. The framework is illustrated on real-world 
data from a near infrared spectrometer used to determine the fat 
content in minced meat. Error bars are computed, including the 
contribution from the dissent of the committee members. 

1 THE OCKHAM FACTOR 

William of Ockham's (1285-1349) principle of economy in explanations, can be 
formulated as follows: 

208 

If several theories account for a phenomenon we should prefer the 
simplest which describes the data sufficiently well. 
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The principle states that a model has two virtues: simplicity and goodness of fit. 
But what is the meaning of "sufficiently well" - i.e. what is the optimal trade-off 
between the two virtues? With Bayesian model comparison we can deduce this 
trade-off. 

We express our belief in a model as its probability given the data, and use Bayes' 
formula: 

P(H I D) = P(D IH)P(H) 
P(D) 

(1) 

We assume that the prior belief P(H) is the same for all models, so we can compare 
models by comparing P(D IH) which is called the evidence for H, and acts as a 
quality measure in model comparison. 

Assume that the model has a single tunable parameter w with a prior range ~ Wprior 

so that pew IH) = 1/ ~Wprior. The most probable (or maximum posterior) value 
WMP of the parameter w is given by the maximum of 

P( ID H)= P(Dlw,H)P(wl1i) 
w, P(DIH) (2) 

The width of this distribution is denoted ~Wpo8terior. The evidence P(D 11i) is 
obtained by integrating over the posterior w distribution and approximating the 
integral: 

P(DIH) 

Evidence 

J P(Dlw,H)P(wIH)dw 

P(D I WMP, H) ~wpo8terior 
~Wprior 

Likelihood x OckhamFactor 

The evidence for the model is the product of two factors: 

(3) 

(4) 

(5) 

• The best fit likelihood, i.e. the probability of the data given the model and 
the tuned parameters. It measures how well the tuned model fits the data . 

• The integrated probability of the tuned model parameters with their un­
certainties, i.e. the collapse of the available parameter space when the data 
is taken into account. This factor is small when the model has many pa­
rameters or when some parameters must be tuned very accurately to fit 
the data. It is called the Ockham Factor since it is large when the model is 
simple. 

By optimizing the modelling through the evidence framework we can avoid the 
overfitting problem as well as the equally important "underfitting" problem. 

2 THE FOUR LEVELS OF INFERENCE 

In 1991-92 MacKay presented a comprehensive and detailed framework for combi­
ning backpropagation neural networks with Bayesian statistics (MacKay, 1992). He 
outlined four levels of inference which applies for instance to a regression problem 
where we have a training set and want to make predictions for new data: 
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Level 1 Make predictions including error bars for new input data. 

Level 2 Estimate the weight parameters and their uncertainties. 

Level 3 Estimate the scale parameters (the weight decay parameters and the noise 
scale parameter) and their uncertainties. 

Level 4 Select the network architecture and for that architecture select one of the 
w-minima. Optionally select a committee to reflect the uncertainty on this 
level. 

Level 1 is the typical goal in an application. But to make predictions we have to 
do some modelling, so at level 2 we pick a net and some weight decay parameters 
and train the net for a while. But the weight decay parameters were picked rather 
arbitrarily, so on level 3 we set them to their inferred maximum posterior (MP) 
value. We alternate between level 2 and 3 until the network has converged. This is 
still not the end, because also the network architecture was picked rather arbitrarily. 
Hence level 2 and 3 are repeated for other architectures and the evidences of these 
are computed on level 4. (Pruning makes level 4 more complicated, see section 6). 

When we make inference on each of these levels, there are uncertainties which are 
described by the posterior distributions of the parameters which are inferred. The 
uncertainty on level 2 is described by the Hessian (the second derivative of the net 
cost function with respect to the weights). The uncertainty on level 3 is negligible 
if the number of weight decays parameters is small compared to the number of 
weights. The uncertainty on level 4 is described by the committee of networks with 
highest evidence within some margin (discussed below). 

The uncertainties are used for two purposes. Firstly they give rise to error bars on 
the predictions on level 1. And secondly the posterior uncertainty divided by the 
prior uncertainty (the Ockham Factor) enters the evidence. 

MacKay's approach differs in two respects from other Bayesian approaches to neural 
nets: 

• It assumes the Gaussian approximation to the posterior weight distribution. 
In contrast, the Monte Carlo approach of (Neal, 1992) does not suffer from 
this limitation . 

• It determines maximum posterior values of the weight decay parameters, 
rather than integrating them out as done in (Buntine and Weigend, 1991). 

It is difficult to justify these choices in general. The Gaussian approximation is 
believed to be good when there are at least 3 training examples per weight (MacKay, 
1992). The use of MP weight decay parameters is the superior method when there 
are ill-defined parameters, as there usually is in neural networks, where some weights 
are typically poorly defined by the data (MacKay, 1993). 

3 BAYESIAN NEURAL NETWORKS 

The training set D consists of N cases of the form (x, t). We model t as a function 
of x, t = y(x) + II, where II is Gaussian noise and y(x) is computed by a neural 
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network 11. with weights w. The noise scale is a free parameter {3 = 1/(1';. The 
probability of the data (the likelihood) is 

P(Dlw,{3,11.) ex exp(-{3En) 

En ~ L:(y - t)2 

where the sum extends over the N cases. 

(6) 

(7) 

In Bayesian modelling we must specify the prior distribution of the model param­
eters. The model contains k adjustable parameters w, called weights, which are 
in general split into several groups, for instance one per layer of the net. Here we 
consider the case with all weights in one group. The general case is described in 
(MacKay, 1992) and in more details in (Thodberg, 1993). The prior of the weights 
w 1S 

p(w\{3,e,11.) ex exp(-{3eEw) 

Ew _ ~L:w2 

(8) 

(9) 

{3 and e are called the scales of the model and are free parameters determined by 
the data. 

The most probable values of the weights given the data, some values of the scales 
(to be determined later) and the model, is given by the maximum of 

P(w\D,{3,e,11.) P(D/w,{3,e, 11.)p(w/{3,e, 11.) ( (3C) 
p(D\{3,e,11.) ex exp - (10) 

(11) 

So the maximum posterior weights according to the probabilistic interpretation are 
identical to the weights obtained by minimising the familiar cost function C with 
weight decay parameter e. This is the well-known Bayesian account for weight 
decay. 

4 MACKAY'S FORMULAE 

The single most useful result of MacKay's analysis is a simple formula for the MP 
value of the weight decay parameter 

En , 
eMP =-E N w -, 

(12) 

where , is the number of well-determined parameters which can be approximated 
by the actual number of parameters k, or computed more accurately from the 
eigenvalues Ai of the Hessian \T\T En: 

k A' -L: ' ,-
- ;=} Ai + eMP 

(13) 

The MP value of the noise scale is {3MP = N /(2C). 
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The evidence for a neural network 'Jf. is, as in section 1, obtained by integration 
over the posterior distribution of the inferred parameters, which gives raise to the 
Ockham Factors: 

Ev('Jf.) = log P( D 1'Jf.) -

logOck(w) 

Ock«(3) -

N - 'Y _ N log 411"C 
2 2 N 

+ log Ock(w) + log Ock«(3) + log Ock(e) 
k 

"" eMP 'Y ~ L.J log - - + log h! + h log 2 
i=l eMP + Ai 2 

J411"/(N - 'Y) Ock(e) = .f4iFt 
logO logO 

(14) 

(15) 

(16) 

The first line in (14) is the log likelihood. The Ockham Factor for the weights 
Ock(w) is small when the eigenvalues Ai of the Hessian are large, corresponding to 
well-determined weights. 0 is the prior range of the scales and is set (subjectively) 
to 103 . 

The expression (15) (valid for a network with a single hidden layer) contains a 
symmetry factor h!2h . This is because the posterior volume must include all w 
configurations which are equivalent to the particular one. The hidden units can be 
permuted, giving a factor h! more posterior volume. And the sign of the weights to 
and from every hidden unit can be changed giving 2h times more posterior volume. 

5 COMMITTEES 

For a given data set we usually train several networks with different numbers of 
hidden units and different initial weights. Several of these networks have evidence 
near or at the maximal value, but the networks differ in their predictions. The 
different solutions are interpreted as components of the posterior distribution and 
the correct Bayesian answer is obtained by averaging the predictions over the solu­
tions, weighted by their posterior probabilities, i.e. their evidences. However, the 
evidence is not accurately determined, primarily due to the Gaussian approxima­
tion. This means that instead of weighting with Ev('Jf.) we should use the weight 
exp{log Ev / ~(log Ev», where ~(log Ev) is the total uncertainty in the evaluation 
of log Ev. As an approximation to this, we define the committee as the models 
with evidence larger than log Evrnax - ~ log Ev, where Evrnax is the largest evidence 
obtained, and all members enter with the same weight. 

To compute the evidence Ev(C) of the committee, we assume for simplicity that all 
networks in the committee C share the same architecture. Let Nc be the number 
of truly different solutions in the committee. Of course, we count symmetric reali­
sations only once. The posterior volume i.e. the Ockham Factor for the weights is 
now Nc times larger. This renders the committee more probable - it has a larger 
evidence: 

log Ev(C) = log Nc + log Ev('Jf.) (17) 
where log Ev('Jf.) denotes the average log evidence of the members. Since the evi­
dence is correlated with the generalisation error, we expect the committee to gene­
ralise better than the committee members. 
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6 PRUNING 

We now extend the Bayesian framework to networks which are pruned to adjust the 
architecture to the particular problem. This extends the fourth level of inference. 

At first sight, the factor h! in the Ockham Factor for the weights in a sparsely con­
nected network appears to be lost, since the network is (in general) not symmetric 
with respect to permutations of the hidden units. However, the symmetry reappears 
because for every sparsely connected network with tuned weights there are h! other 
equivalent network architectures obtained by permuting the hidden units. So the 
factor h! remains. If this argument is not found compelling, it can be viewed as an 
assumption. 

If the data are used to select the architecture, which is the case in pruning designed 
to minimise the cost function, an additional Ockham Factor must be included. 
With one output unit, only the input-to-hidden layer is sparsely connected, so 
consider only these connections. Attach a binary pruning parameter to each of 
the m potential connections. A sparsely connected architecture is described by 
the values of the pruning parameters. The prior probability of a connection to be 
present is described by a hyperparameter cP which is determined from the data i.e. 
it is set to the fraction of connections remaining after pruning (notice the analogy 
between cP and a weight decay parameter). A non-pruned connection gives an 
Ockham Factor cP and a pruned 1 - cP, assuming the data to be certain about the 
architecture. The Ockham Factors for the pruning parameters is therefore 

log Ock(pruning) = m(cPMP log cPMP + (1 - cPMP) 10g(1 - cPMP» (18) 

The tuning of the meta-parameter to the data gives an Ockham factor Ock( cP) :::::; 
J2jm, which is rather negligible. 

From a minimum description length perspective (18) reflects the extra information 
needed to describe the topology of a pruned net relative to a fully connected net. It 
acts like a barrier towards pruning. Pruning is favoured only if the negative contri­
bution log Ock(pruning) is compensated by an increase in for instance log Ock(w). 

7 APPLICATION TO SPECTROSCOPY 

Bayesian Backprop is used in a real-life application from the meat industry. The 
data were recorded by a Tecator near-infrared spectrometer which measures the 
spectrum of light transmitted through samples of minced pork meat. The ab­
sorbance spectrum has 100 channels in the region 850-1050 nm. We want to calibrate 
the spectrometer to determine the fat content. The first 10 principal components 
of the spectra are used as input to a neural network. 

Three weight decay parameters are used: one for the weights and biases of the 
hidden layer, one for the connections from the hidden to the output layer, and one 
for the direct connections from the inputs to the output as well as the output bias. 

The relation between test error and log evidence is shown in figure 1. The test error 
is given as standard error of prediction (SEP), i.e. the root mean square error. The 
12 networks with 3 hidden units and evidence larger than -270 are selected for a 
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Figure 1: The test error as a function of the log evidence for networks trained on 
the spectroscopic data. High evidence implies low test error. 

committee. The committee average gives 6% lower SEP than the members do on 
average, and 21% lower SEP than a non-Bayesian analysis using early stopping (see 
Thodberg, 1993). 

Pruning is applied to the networks with 6 hidden units. The evidence decreases 
slightly, i.e. Ock(pruning) dominates. Also the SEP is slightly worse. So the 
evidence correctly suggests that pruning is not useful for this problem. 1 

The Bayesian error bars are illustrated for the spectroscopic data in figure 2. We 
study the model predictions on the line through input space defined by the second 
principal component axis, i.e. the second input is varied while all other inputs are 
zero. The total prediction variance for a new datum x is 

(19) 

where Uwu comes from the weight uncertainties (level 2) and Ucu from the com­
mittee dissent (level 4). 

1 For artificial data generated by a sparsely connected network the evidence correctly 
points to pruned nets as better models (see Thodberg, 1993). 
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Figure 2: Prediction of the fat content as a function of the second principal com­
ponent P2 of the NIR spectrum. 95% of the training data have Ip21 < 2. The total 
error bars are indicated by a "1 sigma" band with the dotted lines. The total stan­
dard errors O'total(X) and the standard errors of its contributions (O'v, O'wu(x) and 
O'cu(x)) are shown separately, multiplied by a factor of 10. 
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