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Abstract 

This paper describes the Q-routing algorithm for packet routing, 
in which a reinforcement learning module is embedded into each 
node of a switching network. Only local communication is used 
by each node to keep accurate statistics on which routing decisions 
lead to minimal delivery times. In simple experiments involving 
a 36-node, irregularly connected network, Q-routing proves supe­
rior to a nonadaptive algorithm based on precomputed shortest 
paths and is able to route efficiently even when critical aspects of 
the simulation, such as the network load, are allowed to vary dy­
namically. The paper concludes with a discussion of the tradeoff 
between discovering shortcuts and maintaining stable policies. 

1 INTRODUCTION 

The field of reinforcement learning has grown dramatically over the past several 
years, but with the exception of backgammon [8, 2], has had few successful appli­
cations to large-scale, practical tasks. This paper demonstrates that the practical 
task of routing packets through a communication network is a natural application 
for reinforcement learning algorithms. 
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Our "Q-routing" algorithm, related to certain distributed packet routing algorithms 
[6, 7], learns a routing policy which balances minimizing the number of "hops" a 
packet will take with the possibility of congestion along popular routes. It does 
this by experimenting with different routing policies and gathering statistics about 
which decisions minimize total delivery time. The learning is continual and online, 
uses only local information, and is robust in the face of irregular and dynamically 
changing network connection patterns and load. 

The experiments in this paper were carried out using a discrete event simulator to 
model the transmission of packets through a local area network and are described 
in detail in [5]. 

2 ROUTING AS A REINFORCEMENT LEARNING 
TASK 

A packet routing policy answers the question: to which adjacent node should the 
current node send its packet to get it as quickly as possible to its eventual destina­
tion? Since the policy's performance is measured by the total time taken to deliver 
a packet, there is no "training signal" for directly evaluating or improving the policy 
until a packet finally reaches its destination. However, using reinforcement learning, 
the policy can be updated more quickly and using only local information. 

Let Qx(d, y) be the time that a node x estimates it takes to deliver a packet P 
bound for node d by way of x's neighbor node y, including any time that P would 
have to spend in node x's queue. l Upon sending P to y, x immediately gets back 
y's estimate for the time remaining in the trip, namely 

t = . min Q y ( d, z) 
zEnelghbors of y 

If the packet spent q units of time in x's queue and s units of time in transmission 
between nodes x and y, then x can revise its estimate as follows: 

new estimate old estimate 
~~ 

LlQx(d,Y)=17( q+s+t - Qx(d,y)) 

where 17 is a "learning rate" parameter (usually 0.5 in our experiments). The re­
sulting algorithm can be characterized as a version of the Bellman-Ford shortest 
paths algorithm [1, 3] that (1) performs its path relaxation steps asynchronously 
and online; and (2) measures path length not merely by number of hops but rather 
by total delivery time. 

We call our algorithm "Q-routing" and represent the Q-function Qx( d, y) by a large 
table. We also tried approximating Qx with a neural network (as in e.g. [8, 4]), which 
allowed the learner to incorporate diverse parameters of the system, including local 
queue size and time of day, into its distance estimates. However, the results of these 
experiments were inconclusive. 

1 We denote the function by Q because it corresponds to the Q function used in the 
reinforcement learning technique of Q-learning [10]. 
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Figure 1: The irregular 6 x 6 grid topology 

3 RESULTS 

We tested the Q-routing algorithm on a variety of network topologies, including 
the 7-hypercube, a 116-node LATA telephone network, and an irregular 6 x 6 grid. 
Varying the network load, we measured the average delivery time for packets in the 
system after learning had settled on a routing policy, and compared these delivery 
times with those given by a static routing scheme based on shortest paths. The 
result was that in all cases, Q-routing is able to sustain a higher level of network 
load than could shortest paths. 

This section presents detailed results for the irregular grid network pictured in 
Figure l. Under conditions of low load, the network learns fairly quickly to route 
packets along shortest paths to their destinations. The performance vs. time curve 
plotted in the left part of Figure 2 demonstrates that the Q-routing algorithm, 
after an initial period of inefficiency during which it learns the network topology, 
performs about as well as the shortest path router, which is optimal under low load. 

As network load increases, however, the shortest path routing scheme ceases to be 
optimal: it ignores the rising levels of congestion and soon floods the network with 
packets. The right part of Figure 2 plots performance vs. time for the two routing 
schemes under high load conditions: while shortest path is unable to tolerate the 
packet load, Q-routing learns an efficient routing policy. The reason for the learning 
algorithm's success is apparent in the "policy summary diagrams" in Figure 3. 
These diagrams indicate, for each node under a given policy, how many of the 
36 x 35 point-to-point routes go through that node. In the left part of Figure 3, 
which summarizes the shortest path routing policy, two nodes in the center of 
the network (labeled 570 and 573) are on many shortest paths and thus become 
congested when network load is high. By contrast, the diagram on the right shows 
that Q-routing, under conditions of high load, has learned a policy which routes 
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Figure 2: Performance under low load and high load 
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Figure 3: Policy summaries: shortest path and Q-routing under high load 
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some traffic over a longer than necessary path (across the top of the network) so as 
to avoid congestion in the center of the network. 

The basic result is captured in Figure 4, which compares the performances of the 
shortest path policy and Q-routing learned policy at various levels of network load. 
Each point represents the median (over 19 trials) of the mean packet delivery time 
after learning has settled. When the load is very low, the Q-routing algorithm routes 
nearly as efficiently as the shortest path policy. As load increases, the shortest 
path policy leads to exploding levels of network congestion, whereas the learning 
algorithm continues to route efficiently. Only after a further significant increase in 
load does the Q-routing algorithm, too, succumb to congestion. 
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Figure 4: Delivery time at various loads for Q-routing and shortest paths 

3.1 DYNAMICALLY CHANGING NETWORKS 

One advantage a learning algorithm has over a static routing policy is the potential 
for adapting to changes in crucial system parameters during network operation. We 
tested the Q-routing algorithm, unmodified, on networks whose topology, traffic 
patterns, and load level were changing dynamically: 

Topology We manually disconnected links from the network during simulation. 
Qualitatively, Q-routing reacted quickly to such changes and was able to 
continue routing traffic efficiently. 

Traffic patterns We caused the simulation to oscillate periodically between two 
very different request patterns in the irregular grid: one in which all traffic 
was directed between the upper and lower halves of the network, and one 
in which all traffic was directed between the left and right halves. Again, 
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after only a brief period of inefficient routing each time the request pattern 
switched, the Q-routing algorithm adapted successfully. 

Load level When the overall level of network traffic was raised during simula­
tion, Q-routing quickly adapted its policy to route packets around new 
bottlenecks. However, when network traffic levels were then lowered again, 
adaptation was much slower, and never converged on the optimal shortest 
paths. This effect is discussed in the next section . 

3.2 EXPLORATION 

Given the similarity between the Q-routing update equation and the Bellman-Ford 
recurrence for shortest paths, it seems surprising that there is any difference what­
soever between the performance of Q-routing and shortest paths routing at low 
load, as is visible in Figure 4. However, a close look at the algorithm reveals that 
Q-routing cannot fine-tune a policy to discover shortcuts, since only the best neigh­
bor's estimate is ever updated. For instance, if a node learns an overestimate of the 
delivery time for an optimal route, then it will select a suboptimal route as long as 
that route's delivery time is less than the erroneous estimate of the optimal route 's 
delivery time. 

This drawback of greedy Q-Iearning is widely recognized in the reinforcement learn­
ing community, and several exploration techniques have been suggested to overcome 
it [9]. A common one is to have the algorithm select actions with some amount of 
randomness during the initial learning period[10]. But this approach has two seri­
ous drawbacks in the context of distributed routing: (1) the network is continuously 
changing, thus the initial period of exploration never ends; and more significantly, 
(2) random traffic has an extremely negative effect on congestion . Packets sent in 
a suboptimal direction tend to add to queue delays, slowing down all the packets 
passing through those queues, which adds further to queue delays, etc. Because the 
nodes make their policy decisions based on only local information, this increased 
congestion actually changes the problem the learners are trying to solve. 

Instead of sending actual packets in a random direction, a node using the "full 
echo" modification of Q-routing sends requests for information to its immediate 
neighbors every time it needs to make a decision . Each neighbor returns a single 
number-using a separate channel so as to not contribute to network congestion 
in our model-giving that node's current estimate of the total time to the destina­
tion. These estimates are used to adjust the Qx(d , y) values for each neighbor y. 
When shortcuts appear, or if there are inefficiencies in the policy, this information 
propagates very quickly through the network and the policy adjusts accordingly. 

Figure 5 compares the performance of Q-routing and shortest paths routing with 
"full echo" Q-routing. At low loads the performance of "full echo" Q-routing is in­
distinguishable from that of the shortest path policy, as all inefficiencies are purged. 
Under high load conditions, "full echo" Q-routing outperforms shortest paths but 
the basic Q-routing algorithm does better still. Our analysis indicates that "full 
echo" Q-routing constantly changes policy under high load, oscillating between us­
ing the upper bottleneck and using the central bottleneck for the majority of cross­
network traffic. This behavior is unstable and generally leads to worse routing times 
under high load. 



Packet Routing in Dynamically Changing Networks: A Reinforcement Learning Approach 677 

18 Q-routing -
Shortest paths -----

Full Echo -----

2l 
16 

c: 
Q) 
0 
Ul 14 .!!! 

'" CT 

Q; 
::: 12 ..!! 
Q) 

E 
i= 
~ 10 
Q) 

.~ 
Qi 
0 
Q) 8 
Cl 
~ 
Q) 
> « 6 ~,""-,~~ ••. _.".L.~~" •• ~"··----'::···· . 

4 

0.5 1.5 2 2.5 3 3.5 4 4.5 
Network Load Level 

Figure 5: Delivery time at varIOUS loads for Q-routing, shortest paths and "full 
echo" Q-routing 

Ironically, the "drawback" of the basic Q-routing algorithm-that it does no ex­
ploration and no fine-tuning after initially learning a viable policy-actually leads 
to improved performance under high load conditions. We still know of no single 
algorithm which performs best under all load conditions. 

4 CONCLUSION 

This work considers a straightforward application of Q-Iearning to packet rout­
ing. The "Q-routing" algorithm, without having to know in advance the network 
topology and traffic patterns, and without the need for any centralized routing con­
trol system, is able to discover efficient routing policies in a dynamically changing 
network. Although the simulations described here are not fully realistic from the 
standpoint of actual telecommunication networks, we believe this paper has shown 
that adaptive routing is a natural domain for reinforcement learning. Algorithms 
based on Q-routing but specifically tailored to the packet routing domain will likely 
perform even better. 

One of the most interesting directions for future work is to replace the table-based 
representation of the routing policy with a function approximator. This could allow 
the algorithm to integrate more system variables into each routing decision and 
to generalize over network destinations. Potentially, much less routing information 
would need to be stored at each node, thereby extending the scale at which the 
algorithm is useful. We plan to explore some of these issues in the context of packet 
routing or related applications such as auto traffic control and elevator control. 
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