
Packet Routing in Dynamically
Changing Networks:

A Reinforcement Learning Approach

Justin A. Boyan
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Michael L. Littman·
Cognitive Science Research Group

Bellcore
Morristown, NJ 07962

Abstract

This paper describes the Q-routing algorithm for packet routing,
in which a reinforcement learning module is embedded into each
node of a switching network. Only local communication is used
by each node to keep accurate statistics on which routing decisions
lead to minimal delivery times. In simple experiments involving
a 36-node, irregularly connected network, Q-routing proves supe­
rior to a nonadaptive algorithm based on precomputed shortest
paths and is able to route efficiently even when critical aspects of
the simulation, such as the network load, are allowed to vary dy­
namically. The paper concludes with a discussion of the tradeoff
between discovering shortcuts and maintaining stable policies.

1 INTRODUCTION

The field of reinforcement learning has grown dramatically over the past several
years, but with the exception of backgammon [8, 2], has had few successful appli­
cations to large-scale, practical tasks. This paper demonstrates that the practical
task of routing packets through a communication network is a natural application
for reinforcement learning algorithms.

*Now at Brown University, Department of Computer Science

671

672 Boyan and Littman

Our "Q-routing" algorithm, related to certain distributed packet routing algorithms
[6, 7], learns a routing policy which balances minimizing the number of "hops" a
packet will take with the possibility of congestion along popular routes. It does
this by experimenting with different routing policies and gathering statistics about
which decisions minimize total delivery time. The learning is continual and online,
uses only local information, and is robust in the face of irregular and dynamically
changing network connection patterns and load.

The experiments in this paper were carried out using a discrete event simulator to
model the transmission of packets through a local area network and are described
in detail in [5].

2 ROUTING AS A REINFORCEMENT LEARNING
TASK

A packet routing policy answers the question: to which adjacent node should the
current node send its packet to get it as quickly as possible to its eventual destina­
tion? Since the policy's performance is measured by the total time taken to deliver
a packet, there is no "training signal" for directly evaluating or improving the policy
until a packet finally reaches its destination. However, using reinforcement learning,
the policy can be updated more quickly and using only local information.

Let Qx(d, y) be the time that a node x estimates it takes to deliver a packet P
bound for node d by way of x's neighbor node y, including any time that P would
have to spend in node x's queue. l Upon sending P to y, x immediately gets back
y's estimate for the time remaining in the trip, namely

t = . min Q y (d, z)
zEnelghbors of y

If the packet spent q units of time in x's queue and s units of time in transmission
between nodes x and y, then x can revise its estimate as follows:

new estimate old estimate
~~

LlQx(d,Y)=17(q+s+t - Qx(d,y))

where 17 is a "learning rate" parameter (usually 0.5 in our experiments). The re­
sulting algorithm can be characterized as a version of the Bellman-Ford shortest
paths algorithm [1, 3] that (1) performs its path relaxation steps asynchronously
and online; and (2) measures path length not merely by number of hops but rather
by total delivery time.

We call our algorithm "Q-routing" and represent the Q-function Qx(d, y) by a large
table. We also tried approximating Qx with a neural network (as in e.g. [8, 4]), which
allowed the learner to incorporate diverse parameters of the system, including local
queue size and time of day, into its distance estimates. However, the results of these
experiments were inconclusive.

1 We denote the function by Q because it corresponds to the Q function used in the
reinforcement learning technique of Q-learning [10].

Packet Routing in Dynamically Changing Networks: A Reinforcement Learning Approach 673

- - - - - -
•• ••

Figure 1: The irregular 6 x 6 grid topology

3 RESULTS

We tested the Q-routing algorithm on a variety of network topologies, including
the 7-hypercube, a 116-node LATA telephone network, and an irregular 6 x 6 grid.
Varying the network load, we measured the average delivery time for packets in the
system after learning had settled on a routing policy, and compared these delivery
times with those given by a static routing scheme based on shortest paths. The
result was that in all cases, Q-routing is able to sustain a higher level of network
load than could shortest paths.

This section presents detailed results for the irregular grid network pictured in
Figure l. Under conditions of low load, the network learns fairly quickly to route
packets along shortest paths to their destinations. The performance vs. time curve
plotted in the left part of Figure 2 demonstrates that the Q-routing algorithm,
after an initial period of inefficiency during which it learns the network topology,
performs about as well as the shortest path router, which is optimal under low load.

As network load increases, however, the shortest path routing scheme ceases to be
optimal: it ignores the rising levels of congestion and soon floods the network with
packets. The right part of Figure 2 plots performance vs. time for the two routing
schemes under high load conditions: while shortest path is unable to tolerate the
packet load, Q-routing learns an efficient routing policy. The reason for the learning
algorithm's success is apparent in the "policy summary diagrams" in Figure 3.
These diagrams indicate, for each node under a given policy, how many of the
36 x 35 point-to-point routes go through that node. In the left part of Figure 3,
which summarizes the shortest path routing policy, two nodes in the center of
the network (labeled 570 and 573) are on many shortest paths and thus become
congested when network load is high. By contrast, the diagram on the right shows
that Q-routing, under conditions of high load, has learned a policy which routes

674 Boyan and Littman

Q-routing - Q-routing -
500 Shortest paths ----. 500

~
Shortest paths ----.

I

! !: l I I

V
,I II ~ II 1\ ,

I • ,I ,I, ~ I .,' I

J~ .,' ~' I " I " I "' , •
I ,ft I I I I :' :1 ~,' I: IVI~" II
I 1"1 ~ I~ I " II 'I" I I I ",~ 1 ,,\II
: ,'''" I ~ I', II I f I I I I) "', I

400 400 I, f ' ~'~I I' I I ",' I' l ", ~ ,I \I I I 1 ,I
!: ~ ~ ':1 ",1'

Q) :: :~
E " I,

F I
~
Q) 300 300 ,
.~

, ,
Q) ,

I
0

~
,

Q) ~/~
Cl ,
~

I ,
Q)

,
> 200 200 !~ «

" .,' , ,
I ,

I , , ,
100 100 " " j

" I
I , , \ :

0 ------- 0
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

Simulator Time Simulator Time

Figure 2: Performance under low load and high load

1 ~4--131-+1-7------------1+6--125--1~5 364--392--396-----------396--393--367
,

5~----~2 3T7 54----4;3 1 $9
, , , 375 102---5.9

, , , 207 45----5:4
,

3~4--2t2--2~8-----------~--2tu--3~3
, •• • I I

, " .,' , .. '" ,. .,'

2rS445'l'{)- 5fS3$&2'?8

'. • I • ,. ., I

1 tB--1~--219 2$s--1~5--110 2$2--21-8--t 1 4
, , ,

2?7--2<t>1--2-1 7
, , , , , , , , , , , , , , , , , ,

1 rB--1t8---~3 ~---1-t3--146
, , , 1 ~4--1t9--1~8 1 $O--1-+1--H~2 , , ,
, , , , , , , , , , , ,
, , , , , , , , , , , , , , ,

45----7-6----58 79---105---=15 108--121---=14

Figure 3: Policy summaries: shortest path and Q-routing under high load

Packet Routing in Dynamically Changing Networks: A Reinforcement Learning Approach 675

some traffic over a longer than necessary path (across the top of the network) so as
to avoid congestion in the center of the network.

The basic result is captured in Figure 4, which compares the performances of the
shortest path policy and Q-routing learned policy at various levels of network load.
Each point represents the median (over 19 trials) of the mean packet delivery time
after learning has settled. When the load is very low, the Q-routing algorithm routes
nearly as efficiently as the shortest path policy. As load increases, the shortest
path policy leads to exploding levels of network congestion, whereas the learning
algorithm continues to route efficiently. Only after a further significant increase in
load does the Q-routing algorithm, too, succumb to congestion.

1B Q-routing -
Shortest paths '' .

W
16

u
c:
Ql
u
III 14 Ql
'5
0-

w
~ 12
Ql

E
i=
~ 10
Ql

. ~
Qi
0
Ql B
0>
~
Ql

~ 6 , ,

_ .. --"-- "

4

0.5 1.5 2 2.5 3 3.5 4 4.5
Network Load Level

Figure 4: Delivery time at various loads for Q-routing and shortest paths

3.1 DYNAMICALLY CHANGING NETWORKS

One advantage a learning algorithm has over a static routing policy is the potential
for adapting to changes in crucial system parameters during network operation. We
tested the Q-routing algorithm, unmodified, on networks whose topology, traffic
patterns, and load level were changing dynamically:

Topology We manually disconnected links from the network during simulation.
Qualitatively, Q-routing reacted quickly to such changes and was able to
continue routing traffic efficiently.

Traffic patterns We caused the simulation to oscillate periodically between two
very different request patterns in the irregular grid: one in which all traffic
was directed between the upper and lower halves of the network, and one
in which all traffic was directed between the left and right halves. Again,

676 Boyan and Littman

after only a brief period of inefficient routing each time the request pattern
switched, the Q-routing algorithm adapted successfully.

Load level When the overall level of network traffic was raised during simula­
tion, Q-routing quickly adapted its policy to route packets around new
bottlenecks. However, when network traffic levels were then lowered again,
adaptation was much slower, and never converged on the optimal shortest
paths. This effect is discussed in the next section .

3.2 EXPLORATION

Given the similarity between the Q-routing update equation and the Bellman-Ford
recurrence for shortest paths, it seems surprising that there is any difference what­
soever between the performance of Q-routing and shortest paths routing at low
load, as is visible in Figure 4. However, a close look at the algorithm reveals that
Q-routing cannot fine-tune a policy to discover shortcuts, since only the best neigh­
bor's estimate is ever updated. For instance, if a node learns an overestimate of the
delivery time for an optimal route, then it will select a suboptimal route as long as
that route's delivery time is less than the erroneous estimate of the optimal route 's
delivery time.

This drawback of greedy Q-Iearning is widely recognized in the reinforcement learn­
ing community, and several exploration techniques have been suggested to overcome
it [9]. A common one is to have the algorithm select actions with some amount of
randomness during the initial learning period[10]. But this approach has two seri­
ous drawbacks in the context of distributed routing: (1) the network is continuously
changing, thus the initial period of exploration never ends; and more significantly,
(2) random traffic has an extremely negative effect on congestion . Packets sent in
a suboptimal direction tend to add to queue delays, slowing down all the packets
passing through those queues, which adds further to queue delays, etc. Because the
nodes make their policy decisions based on only local information, this increased
congestion actually changes the problem the learners are trying to solve.

Instead of sending actual packets in a random direction, a node using the "full
echo" modification of Q-routing sends requests for information to its immediate
neighbors every time it needs to make a decision . Each neighbor returns a single
number-using a separate channel so as to not contribute to network congestion
in our model-giving that node's current estimate of the total time to the destina­
tion. These estimates are used to adjust the Qx(d , y) values for each neighbor y.
When shortcuts appear, or if there are inefficiencies in the policy, this information
propagates very quickly through the network and the policy adjusts accordingly.

Figure 5 compares the performance of Q-routing and shortest paths routing with
"full echo" Q-routing. At low loads the performance of "full echo" Q-routing is in­
distinguishable from that of the shortest path policy, as all inefficiencies are purged.
Under high load conditions, "full echo" Q-routing outperforms shortest paths but
the basic Q-routing algorithm does better still. Our analysis indicates that "full
echo" Q-routing constantly changes policy under high load, oscillating between us­
ing the upper bottleneck and using the central bottleneck for the majority of cross­
network traffic. This behavior is unstable and generally leads to worse routing times
under high load.

Packet Routing in Dynamically Changing Networks: A Reinforcement Learning Approach 677

18 Q-routing -
Shortest paths -----

Full Echo -----

2l
16

c:
Q)
0
Ul 14 .!!!

'" CT

Q;
::: 12 ..!!
Q)

E
i=
~ 10
Q)

.~
Qi
0
Q) 8
Cl
~
Q)
> « 6 ~,""-,~~ ••. _.".L.~~" •• ~"··----'::···· .

4

0.5 1.5 2 2.5 3 3.5 4 4.5
Network Load Level

Figure 5: Delivery time at varIOUS loads for Q-routing, shortest paths and "full
echo" Q-routing

Ironically, the "drawback" of the basic Q-routing algorithm-that it does no ex­
ploration and no fine-tuning after initially learning a viable policy-actually leads
to improved performance under high load conditions. We still know of no single
algorithm which performs best under all load conditions.

4 CONCLUSION

This work considers a straightforward application of Q-Iearning to packet rout­
ing. The "Q-routing" algorithm, without having to know in advance the network
topology and traffic patterns, and without the need for any centralized routing con­
trol system, is able to discover efficient routing policies in a dynamically changing
network. Although the simulations described here are not fully realistic from the
standpoint of actual telecommunication networks, we believe this paper has shown
that adaptive routing is a natural domain for reinforcement learning. Algorithms
based on Q-routing but specifically tailored to the packet routing domain will likely
perform even better.

One of the most interesting directions for future work is to replace the table-based
representation of the routing policy with a function approximator. This could allow
the algorithm to integrate more system variables into each routing decision and
to generalize over network destinations. Potentially, much less routing information
would need to be stored at each node, thereby extending the scale at which the
algorithm is useful. We plan to explore some of these issues in the context of packet
routing or related applications such as auto traffic control and elevator control.

678 Boyan and Littman

Acknowledgements

The authors would like to thank for their support the Bellcore Cognitive Science
Research Group, the National Defense Science and Engineering Graduate fellowship
program, and National Science Foundation Grant IRI-9214873.

References

[1] R. Bellman. On a routing problem. Quarterly of Applied Mathematics,
16(1):87-90, 1958.

[2] J. Boyan. Modular neural networks for learning context-dependent game strate­
gies. Master's thesis, Computer Speech and Language Processing, Cambridge
University, 1992.

[3] L. R. Ford, Jr. Flows in Networks. Princeton University Press, 1962.

[4] L.-J . Lin. Reinforcement Learning for Robots Using Neural Networks. PhD
thesis, School of Computer Science, Carnegie Mellon University, 1993.

[5] M. Littman and J. Boyan. A distributed reinforcement learning scheme for net­
work routing. Technical Report CMU-CS-93-165, School of Computer Science,
Carnegie Mellon University, 1993.

[6] H. Rudin. On routing and delta routing: A taxonomy and performance com­
parison of techniques for packet-switched networks. IEEE Transactions on
Communications, COM-24(1):43-59, January 1976.

[7] A. Tanenbaum. Computer Networks. Prentice-Hall, second edition edition,
1989.

[8] G. Tesauro. Practial issues in temporal difference learning. Machine Learning,
8(3/4), May 1992.

[9] Sebastian B. Thrun. The role of exploration in learning control. In David A.
White and Donald A. Sofge, editors, Handbook of Intelligent Control: Neural,
Fuzzy, and Adaptive Approaches. Van Nostrand Reinhold, New York, 1992.

[10] C . Watkins. Learning from Delayed Rewards. PhD thesis, King's College,
Cambridge, 1989.

