
Exploiting Chaos to Control the Future

Gary W. Flake* Guo-Zhen Sunt Yee-Chun Leet

Hsing-Hen Chent

Institute for Advance Computer Studies
University of Maryland

College Park, MD 20742

Abstract

Recently, Ott, Grebogi and Yorke (OGY) [6] found an effective
method to control chaotic systems to unstable fixed points by us
ing only small control forces; however, OGY's method is based on
and limited to a linear theory and requires considerable knowledge
of the dynamics of the system to be controlled. In this paper we use
two radial basis function networks: one as a model of an unknown
plant and the other as the controller. The controller is trained
with a recurrent learning algorithm to minimize a novel objective
function such that the controller can locate an unstable fixed point
and drive the system into the fixed point with no a priori knowl
edge of the system dynamics. Our results indicate that the neural
controller offers many advantages over OGY's technique.

1 Introduction

Recently, Ott, Grebogi and Yorke (OGY) [6] proposed a simple but very good idea.
Since any small perturbation can cause a large change in a chaotic trajectory, it
is possible to use a very small control force to achieve a large trajectory modifi
cation. Moreover, due to the ergodicity of chaotic motion, any state in a chaotic

*Department of Computer Science, peyote@umiacs.umd.edu
tLaboratory for Plasma Research

647

648 Flake, Sun, Lee, and Chen

attractor can be reached by a small control force . Since OGY published their work,
several experiments and simulations have proven the usefulness of OGY's method.
One prominent application of OGY's method is the prospect of controlling cardiac
chaos [1] .

We note that there are several unfavorable constraints on OGY's method. First,
it requires a priori knowledge of the system dynamics, that is, the location of
fixed points. Second, due to the limitation of linear theory, it will not work in the
presence of large noise or when the control force is as large as beyond the linear
region from which the control law was constructed. Third, although the ergodicity
theory guarantees that any state after moving away from the desired fixed point
will eventually return to its linear vicinity, it may take a very long time for this to
happen, especially for a high dimensional chaotic attractor.

In this paper we will demonstrate how a neural network (NN) can control a chaotic
system with only a small control force and be trained with only examples from
the state-space. To solve this problem, we introduced a novel objective function
which measures the distance between the current state and its previous average.
By minimizing this objective function, the NN can automatically locate the fixed
point. As a preliminary step , a training set is used to train a forward model for
the chaotic dynamics. The work of Jordan and Rumelhart [4] has shown that
control problems can be mapped into supervised learning problems by coupling the
outputs of a controller NN (the control signals) to the inputs of a forward model
of a plant to form a multilayer network that is indirectly recurrent. A recurrent
learning a.lgorithm is used to train the controller NN. To facilitate learning we use an
extended radial basis function (RBF) network for both the forward model and the
controller . To benchmark with OGY's result, the Himon map is used as a numerical
example. The numerical results have shown the preliminary success of the proposed
scheme. Details will be given in the following sections.

In the next section we give our methodology and describe the general form of the
recurrent learning algorithm used in our experiments. In Section 3, we discuss RBF
networks and reintroduce a more powerful version. In Section 4, the numerical
results are presented in detail. Finally, in Section 5, we give our conclusions.

2 Recurrent Learning for Control

Let kC) denote a NN whose output, tit, is composed through a plant, l(·), with
unknown dynamics. The output of the unknown plant (the state), it+l' forms
part of the input for the NN a.t the next time step, hence the recurrency. At each
time step the state is also passed to an output function , gC), which computes the
sensation, Yt+l. The time evolution of this system is more accurately described by

fit k(it ,!h+l'W)

it+l {(it, fit)

Yt+l g(Xt+I),

where ii7+1 is the desired sensation for time t + 1 and W represents the trainable
weights for the network . Additionally, we define the temporally local and global

Exploiting Chaos to Control the Future 649

error functionals

J t = ~11Y7 - Ytl1 2 and E = L~I Ji,

where N is the final time step for the system.

The real-time recurrent learning (RTRL) algorithm [9] for training the network
weights to minimize E is based on the fair assumption that minimizing the local
error functionals with a small learning rate at each time step will correspond to
minimizing the global error. To derive the learning algorithm, we can imagine the
system consisting of the plant, controller, and error functionals as being unfolded
in time. From this perspective we can view each instance of the controller NN
as a separate NN and thus differentiate the error functionals with respect to the
network weights at different times. Hence, we now add a time index to Wt to
represent this fact. However, when we use W without the time index, the term
should be understood to be time invariant.

We can now define the matrix

f t = ~ a~t = ~it aiIt-1 (axt aiIt-1 ait)
L.J £) - £) a - + £)- a.... + a.... ft-I,
i=O UWi UUt-l Wt-I UUt-l Xt-I Xt-l

which further allows us to define

aJi
aw
aE
aw

(1)

(2)

(3)

Equation 2 is the gradient equation for the RTRL algorithm while Equation 3 is for
the backpropagation through time (BPTT) learning algorithm [7]. The gradients
defined by these equations are usually used with gradient descent on a multilayer
perceptron (MLP) . We will use them on RBF networks.

3 The CNLS Network

The Connectionist Normalized Local Spline (eNLS) network [3] is an extension of
the more familiar radial basis function network of Moody and Darken [5]. The
forward operation of the network is defined by

(4)

where

(5)

All of the equations in this section assume a single output. Generalizing them for
multiple outputs merely adds another index to the terms. For all of our simulations,
we choose to distribute the centers, iii, based on a sample of the input space.

650 Flake, Sun, Lee, and Chen

Additionally, the basis widths, f3i' are set to an experimentally determined constant .
Because the output, <p, is linear in the terms Ii and d~, training them is very fast.
To train the CNLS network on a prediction problem we, can use a quadratic error
function of the form E = ~(y(i) - qj(i»2, where y(i) is the target function that
we wish to approximate. We use a one-dimensional Newton-like method [8] which
yields the update equations

If + 7J (y(i) - <P(i»L'~~~i)'

~ + 7J (y(x) - <p(x»~=---=-!J...£...!..lo..::....L--

The right-most update rules form the learning algorithm when using the CNLS
network for prediction, where 7J is a learning rate that should be set below 1.0. The
left-most update rules describe a more general learning algorithm that can be used
when a target output is unknown.

When using the CNLS network architecture as part of a recurrent learning algorithm
we must be able to differentiate the network outputs with respect to the inputs. Note
that in Equations 1 and 2 each of the terms aXt/aUt-l, aUt-daxt-l, ait/Bit- 1 ,

and Biii/ aii can either be exactly solved or approximated by differentiating a CNLS
network. Since the CNLS output is highly nonlinear in its inputs, computing these
partial derivatives is not quite as elegant as it would be in a MLP . Nevertheless, it
can be done. We skip the details and just show the end result:

ann
a: = ~ d~Pi(X) + 2 ~(pj (x) qj f3j (aj - i)) - 2<p(x)::;,

l=l J=l

(6)

4 Adaptive Control

By combining the equations from the last two sections, we can construct a recurrent
learning scheme for RBF networks in a similar fashion to what has been done with
MLP networks. To demonstrate the utility of our technique, we have chosen a well
studied nonlinear plant that has been successfully modeled and controlled by using
non-neural techniques. Specifically, we will use the Henon map as a plant, which
has been the focus of much of the research of OGY [6]. We also adopt some of their
notation and experimental constraints.

4.1 The Himon Map

The Henon map [2] is described by the equations

(7)
(8)

Exploiting Chaos to Control the Future 651

where A = Ao + p and p is a control parameter that may be modified at each time
step to coerce the plant into a desirable state. For all simulations we set Ao = 1.29
and B = 0.3 which gives the above equations a chaotic attracter that also contains
an unstable fixed point. Our goal is to train a CNLS network that can locate and
drive the map into the unstable fixed point and keep it there with only a minimal
amount of information about the plant and by using only small values of p.

The unstable fixed point (XF, YF) in Equations 7 and 8 can be easily calculated as
XF = YF ~ 0.838486. Forcing the Henon map to the fixed point is trivial if the
controller is given unlimited control of the parameter. To make the problem more
realistic we define p* as the maximum magnitude that p can take and use the rule
below on the left

if Ipi < p*
if p > p*
if p < -p*

_ {p if Ipl < p*
Pn - 0 if Ipl > p*

while OGY use the rule on the right. The reason we avoid the second rule is that
it cannot be modeled by a CNLS network with any precision since it is step-like.

The next task is to define what it means to "control" the Henon map. Having
analytical knowledge of the fixed point in the attracter would make the job of the
controller much easier, but this is unrealistic in the case where the dynamics of
the plant to control are unknown. Instead, we use an error function that simply
compares the current state of the plant with an average of previous states:

1 [2 2] et=2 (Xt-(x)r) +(Yt-(Y)r) , (9)

where (.)r is the average of the last T values of its argument. This function ap
proaches zero when the map is in a fixed point for time length greater than T. This
function requires no special knowledge about the dynamics of the plant, yet it still
enforces our constraint of driving the map into a fixed point.

The learning algorithm also requires the partial derivatives of the error function with
respect to the plant state variables, which are oet!f)xt = Xt - (x}r and oet!oYt =
Yt - (Y)r. These two equations and the objective function are the only special
purpose equations used for this problem. All other equations generalize from the
derivation of the algorithm. Additionally, since the "output" representation (as
discussed earlier) is identical to the state representation, training on a distinct
output function is not strictly necessary in this case. Thus, we simplify the problem
by only using a single additional model for the unknown next-state function of the
Henon map.

4.2 Simulation

To facilitate comparison between alternate control techniques, we now introduce
the term f6t where 6t is a random variable and f is a small constan~ which specifies
the intensity of the noise. We use a Gaussian distribution for bt such that the
distribution has a zero mean, is independent, and has a variance of one. In keeping
with [6], we discard any values of 6t which are greater in magnitude than 10. For
training we set f = 0.038. However, for tests on the real controller, we will show
results for several values of f.

652 Flake, Sun, Lee, and Chen

(a) • • • (b) • • • (c) • • •

"""
'r

(d) • • - (e) . • .
(f) •

Figure 1: Experimental results from training a neural controller to drive the Himon
map into a fixed point. From (a) to (f), the values of fare 0.035, 0.036, 0.038,
0.04,0 .05, and 0.06, respectively. The top row corresponds to identical experiments
performed in [6].

We add the noise in two places. First, when training the model, we add noise to
the target output of the model (the next state). Second, when testing the controller
on the real Henon map, we add the noise to the input of the plant (the previous
state). In the second case, we consider the noise to be an artifact of our fictional
measurements; that is, the plant evolves from the previous noise free state.

Training the controller is done in two stages: an off-line portion to tune the model
and an on-line stage to tune the controller. To train the model we randomly pick
a starting state within a region (-1.5, 1.5) for the two state variables. We then
iterate the map for one hundred cycles with p = 0 so that the points will converge
onto the chaotic attractor. Next, we randomly pick a value for p in the range of
(-p*, p*). The last state from the iteration is combined with this control parameter
to compute a target state. We then add the noise to the new state values. Thus,
the model input consists of a clean previous state and a control parameter and the
target values consist of the noisy next state. We compute 100 training patterns
in this manner. Using the prediction learning algorithm for the CNLS network
we train the model network on each of the 100 patterns (in random order) for 30
epochs. The model quickly converges to a low average error.

In the next stage, we use the model network to train the controller network in two
ways. First, the model acts as the plant for the purposes of computing a next state.
Additionally, we differentiate the model for values needed for the RTRL algorithm.
We train the controller for 30 epochs, where each epoch consists of 50 cycles. At
the beginning of each epoch we initialize the plant state to some random values
(not necessarily on the chaotic attracter ,) and set the recurrent history matrix,

Exploiting Chaos to Control the Future 653

... -_ _ ... _-- .. _.... . .. _. -.-_ _ -. . -.- -_ ... _---.-- . _ __ .- -. --.-.. _. _ ... _-..

(a) (b) (c)

Figure 2: Experimental results from [6]. From left to right, the values of f. are 0.035,
0.036, and 0.038, respectively.

r t, to zero. Then, for each cycle, we feed the previous state into the controller
as input. This produces a control parameter which is fed along with the previous
state as input into the model network, which in turn produces the next state. This
next state is fed into the error function to produce the error signal. At this point
we compute all of the necessary values to train the controller for that cycle while
maintaining the history matrix.

In this way, we train both the model and control networks with only 100 data points,
since the controller never sees any of the real values from the Henon map but only
estimates from the model. For this experiment both the control and model RBF
networks consist of 40 basis functions.

4.3 Summary

Our results are summarized by Figure 1. As can be seen, the controller is able to
drive the Henon Map into the fixed point very rapidly and it is capable of keeping
it there for an extended period of time without transients. As the level of noise is
increased, it can be seen that the plant maintains control for quite some time . The
first visible spike can be observed when f. = 0.04.

These results are an improvement over the results generated from the best non
neural technique available for two reasons: First, the neural controller that we
have trained is capable of driving the Henon map into a fixed point with far fewer
transients then other techniques. Specifically, alternate techniques , as illustrated
in Figure 2, experience numerous spikes in the map for values of f. for which our
controller is spike-free (0.035 - 0.038). Second, our training technique has smaller
data requirements and uses less special purpose information. For example, the
RBF controller was trained with only 100 data points compared to 500 for the non
neural. Additionally, non-neural techniques will typically estimate the location of
the fixed point with an initial data set. In the case of [6] it was assumed that the
fixed point could be easily discovered by some technique, and as a result all of their
experiments rely on the true (hard-coded) fixed point. This, of course, could be
discovered by searching the input space on the RBF model, but we have instead
allowed the controller to discover this feature on its own.

654 Flake, Sun, Lee, and Chen

5 Conclusion and Future Directions

A crucial component of the success of our approach is the objective function that
measures the distance between the current state and the nearest time average.
The reason why this objective function works is that during the control stage the
learning algorithm is minimizing only a small distance between the current point
and the "moving target." This is in contrast to minimizing the large distance
between the current point and the target point, which usually causes unstable long
time correlation in chaotic systems and ruins the learning. The carefully designed
recurrent learning algorithm and the extended RBF network also contribute to the
success of this approach. Our results seem to indicate that RBF networks hold great
promise in recurrent systems. However, further study must be done to understand
why and how NNs could provide more useful schemes to control real world chaos.

Acknowledgements

We gratefully acknowledge helpful comments from and discussions with Chris
Barnes, Lee Giles, Roger Jones, Ed Ott, and James Reggia. This research was
supported in part by AFOSR grant number F49620-92-J-0519.

References

[1] A. Garfinkel, M.L. Spano, and W.L. Ditto. Controlling cardiac chaos. Science,
257(5074):1230, August 1992.

[2] M. HEmon. A two-dimensional mapping with a strange attractor. Communica
tions in Mathematical Physics, 50:69-77, 1976.

[3] R.D. Jones, Y.C. Lee, C.W. Barnes, G.W. Flake, K. Lee, P.S. Lewis, and S. Qian.
Function approximation and time series prediction with neural network. In
Proceedings of the International Joint Conference on Neural Networks, 1990.

[4] M.1. Jordan and D.E. Rumelhart. Forward models: Supervised learning with a
distal teacher. Technical Report Occasional Paper #40, MIT Center for Cogni
tive Science, 1990.

[5] J. Moody and C. Darken. Fast learning in networks of locally-tuned processing
units. Neural Computation, 1:281-294, 1989.

[6] E. Ott, C. Grebogi, and J .A. Yorke. Controlling chaotic dynamical systems.
In D.K. Campbell, editor, CHAOS: Soviet-American Perspectives on Nonlinear
Science, pages 153-172. American Institute of Physics, New York, 1990.

[7] F.J. Pineda. Generalization of back-propagation to recurrent neural networks.
Physical Review Letters, 59:2229-2232, 1987.

[8] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical
Recipes. Cambridge University Press, Cambridge, 1986.

[9] R.J. Williams and D. Zipser. Experimental analysis of the real-time recurrent
learning algorithm. Connection Science, 1:87-111, 1989.

