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Abstract 

We use mean-field theory methods from Statistical Mechanics to 
derive the "softmax" nonlinearity from the discontinuous winner­
take-all (WTA) mapping. We give two simple ways of implementing 
"soft max" as a multiterminal network element. One of these has a 
number of important network-theoretic properties. It is a recipro­
cal, passive, incrementally passive, nonlinear, resistive multitermi­
nal element with a content function having the form of information­
theoretic entropy. These properties should enable one to use this 
element in nonlinear RC networks with such other reciprocal el­
ements as resistive fuses and constraint boxes to implement very 
high speed analog optimization algorithms using a minimum of 
hardware. 

1 Introduction 

In order to efficiently implement nonlinear optimization algorithms in analog VLSI 
hardware, maximum use should be made of the natural properties of the silicon 
medium. Reciprocal circuit elements facilitate such an implementation since they 
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can be combined with other reciprocal elements to form an analog network having 
Lyapunov-like functions: the network content or co-content. In this paper, we show 
a reciprocal implementation of the "softmax" nonlinearity that is usually used to 
enforce local competition between neurons [Peterson, 1989]. We show that the cir­
cuit is passive and incrementally passive, and we explicitly compute its content and 
co-content functions. This circuit adds a new element to the library of the analog 
circuit designer that can be combined with reciprocal constraint boxes [Harris, 1988] 
and nonlinear resistive fuses [Harris, 1989] to form fast, analog VLSI optimization 
networks. 

2 Derivation of the Softmax Nonlinearity 

To a vector y E ~n of distinct real numbers, the discrete winner-take-all (WTA) 
mapping W assigns a vector of binary numbers by giving the value 1 to the com­
ponent of y corresponding to maxl<i<n Yi and the value 0 to the remaining com­
ponents. Formally, W is defined as - -

W(y) = (Wl(y), ... I Wn(y»T 

where for every 1 ~ j ~ n, 

{ 1 if YJ' > Yi, V 1 ~ i ~ n 
Wj (y) = 0 otherwise 

Following [Geiger, 1991], we assign to the vector y the "energy" function 

n 

Ey(z) = - L ZkYk = _zT y, z E Vnl 

k=l 

(1) 

(2) 

where Vn is the set of vertices of the unit simplex Sn = {x E ~n, Zi > 0, 1 < i < 
n and E~=l Zk = 1}. Every vertex in the simplex encodes one possible winner. It 
is then easy to show that W(y) is the solution to the linear programming problem 

n 

max LZkYk. 
ZE'V .. 

k=l 

Moreover, we can assign to the energy Ey(z) the Gibbs distribution 

e-Ey(Z)/T 
Py(z) = Py(Zl' ... , zn) = ZT 

where T is the temperature of the heat bath and ZT is a normalizing constant. 
Then one can show that the mean of Zj considered as a random variable is given 
by [Geiger, 1991] 

A _ ey;/T ey;/T 
Fj(y/T) = Zj = -z = En/T· 

T i=l eY' 

The mapping F : ~n -+ ~n whose components are the Fj's, 1 ~ j < n, is the gener­
alized sigmoid mapping [Peterson, 1989] or "soft max" . It plays, in WTA networks, 
a role similar to that of the sigmoidal function in Hopfield and backpropagation 
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Figure 1: A circuit implementation of softmax with 5 inputs and 5 outputs. This 
circuit is operated in subthreshold mode, takes the gates voltages as inputs and 
gives the drain currents as outputs. This circuit is not a reciprocal multiterminal 
element. 

networks [Hopfield, 1984, Rumelhart, 1986] and is usually used for enforcing com­
petitive behavior among the neurons of a single cluster in networks of interacting 
clusters [Peterson, 1989, Waugh, 1993]. 

A 
For y E ~n, we denote by FT(y) = F(y IT). The softmax mapping satisfies the 
following properties: 

1. The mapping FT converges pointwise to W over ~n as T -+ 0 and to the 
center of mass of Sn, *e = *(1,1, . . . , 1)T E ~n, as T -+ +00. 

2. The Jacobian DF of the softmax mapping is a symmetric n x n matrix that 
satisfies 

DF(y) = diag (F,,(y» - F(y)F(y)T. (3) 

It is always singular with the vector e being the only eigenvector correspond­
ing to the zero eigenvalue. Moreover, all its eigenvalues are upper-bounded 
by maxlS"Sn F,,(y) < 1. 

3. The soft max mapping is a gradient map, i.e, there exists a "potential" 
function 'P : ~n -+ ~ such that F = V'P. Moreover 'P is convex. 

The symbol 'P was chosen to indicate that it is a potential function. It should be 
noted that if F is the gradient map of 'P then FT is the gradient map of T'PT 
where 'PT(Y) = 'P(yIT). In a related paper [Elfadel, 1993], we have found that 
the convexity of'P is essential in the study of the global dynamics of analog WTA 
networks. Another instance where the convexity of 'P was found important is the 
one reported in [Kosowsky, 1991] where a mean-field algorithm was proposed to 
solve the linear assignment problem. 
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Figure 2: Modified circuit implementation of softmax. In this circuit all the tran­
sistors are diode-connected, and all the drain currents are well in saturation region. 
Note that for every transistor, both the voltage input and the current output are 
on the same wire - the drain. This circuit is a reciprocal multiterminal element. 

3 Circuit Implementations and Properties 

Now we propose two simple CMOS circuit implementations of the generalized sig­
moid mapping. See Figures 1 and 2. When the transistors are operated in the 
subthreshold region the drain currents i l , .. . ,in are the outputs of a softmax map­
ping whose inputs are the gate voltages Vl, •.. , Vn . The explicit v - i characteristics 
are given by 

(4) 

where K, is a process-dependent parameter and Vo is the thermal voltage 
([Mead, 1989],p. 36). These circuits have the interesting properties of being un­
clocked and parallel. Moreover, the competition constraint is imposed naturally 
through the KCL equation and the control current source. From a complexity 
point of view, this circuit is most striking since it computes n exponentials, n ra­
tios, and n - 1 sums in one time constant! A derivation similar to the above was 
independently carried out in [Waugh, 1993] for the circuit of Figure 1. Although 
the first circuit implements softmax, it has two shortcomings. The first is practical: 
the separation between inputs and outputs implies additional wiring. The second 
is theoretical: this circuit is not a reciprocal multiterminal element, and therefore 
it can't be combined with other reciprocal elements like resistive fuses or constraint 
boxes to design analog, reciprocal optimization networks. 

Therefore, we only consider the circuit of Figure 2 and let v and i be the n­
dimensional vectors representing the input voltages and the output currents, respec­
tively. 1 The softmax mapping i = F(v) represents a voltage-controlled, nonlinear, 

lCompare with Lazarro et. al.'s WTA circuit [Lazzaro, 1989] whose inputs are currents 
and outputs are voltages. 
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resistive multiterminal element. The main result of our paper is the following: 2 

Theorem 1 The softmax multiterminal element F is reciprocal, passive, locally 
passive and has a co-content function given by 

1 n 

~(v) = K, Ie Vo In L exp(K,vm/Vo) (5) 
m=l 

and a content function given by 

..w..*(O) _ IeVo ~ im 1 im 
'If I - -- L.J - n-. 

K, m=l Ie Ie 
(6) 

Thus, with this reciprocal, locally passive implementation of the softmax mapping, 
we have added a new circuit element to the library of the circuit designer. Note 
that this circuit element implements in an analog way the constraint L:~=1 y" = 1 
defining the unit simplex Sn. Therefore, it can be considered a nonlinear constraint 
box [Harris, 1988] that can be used in reciprocal networks to implement analog 
optimization algorithms. 

The expression of ~* is a strong reminder of the information-theoretic definition of 
entropy. We suggest the name "entropic resistor" for the circuit of Figure 2. 

4 Conclusions 

In this paper, we have discussed another instance of convergence between the sta­
tistical physics paradigm of Gibbs distributions and analog circuit implementation 
in the context of the winner-take-all function. The problem of using the simple, 
reciprocal circuit implementation of softmax to design analog networks for find­
ing near optimal solutions of the linear assignment problem [Kosowsky, 1991] or 
the quadratic assignment problem [Simic, 1991] is still open and should prove a 
challenging task for analog circuit designers. 
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