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Abstract 

In this work we apply a texture classification network to remote sensing im­
age analysis. The goal is to extract the characteristics of the area depicted 
in the input image, thus achieving a segmented map of the region. We have 
recently proposed a combined neural network and rule-based framework 
for texture recognition. The framework uses unsupervised and supervised 
learning, and provides probability estimates for the output classes. We 
describe the texture classification network and extend it to demonstrate 
its application to the Landsat and Aerial image analysis domain . 

1 INTRODUCTION 

In this work we apply a texture classification network to remote sensing image 
analysis. The goal is to segment the input image into homogeneous textured regions 
and identify each region as one of a prelearned library of textures, e.g. tree area and 
urban area distinction. Classification 0 f remote sensing imagery is of importance in 
many applications, such as navigation, surveillance and exploration. It has become 
a very complex task spanning a growing number of sensors and application domains. 
The applications include: landcover identification (with systems such as the AVIRIS 
and SPOT), atmospheric analysis via cloud-coverage mapping (using the AVHRR 
sensor), oceanographic exploration for sea/ice type classification (SAR input) and 
more. 

Much attention has been given to the use of the spectral signature for the identifica-
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tion of region types (Wharton, 1987; Lee and Philpot, 1991). Only recently has the 
idea of adding on spatial information been presented (Ton et aI, 1991). In this work 
we investigate the possibility of gaining information from textural analysis. We 
have recently developed a texture recognition system (Greenspan et aI, 1992) which 
achieves state-of-the-art results on natural textures. In this paper we apply the 
system to remote sensing imagery and check the system's robustness in this noisy 
environment. Texture can playa major role in segmenting the images into homoge­
neous areas and enhancing other sensors capabilities, such as multispectra analysis, 
by indicating areas of interest in which further analysis can be pursued. Fusion of 
the spatial information with the spectral signature will enhance the classification 
and the overall automated analysis capabilities. 

Most of the work in the literature focuses on human expert-based rules with specific 
sensor data calibration. Some of the existing problems with this classic approach 
are the following (Ton et aI, 1991): 
- Experienced photointerpreters are required to spend a considerable amount of 
time generating rules. 
- The rules need to be updated for different geographical regions. 
- No spatial rules exist for the complex Landsat imagery. 
An interesting question is if one can automate the rule generation. In this paper we 
present a learning framework in which spatial rules are learned by the system from 
a given database of examples. 

The learning framework and its contribution in a texture-recognition system is the 
topic of section 2. Experimental results of the system's application to remote sensing 
imagery are presented in section 3. 

2 The texture-classification network 

We have previously presented a texture classification network which combines a 
neural network and rule-based framework (Greenspan et aI, 1992) and enables both 
unsupervised and supervised learning. The system consists of three major stages, 
as shown in Fig. 1. The first stage performs feature extraction and transforms the 
image space into an array of 15-dimensional feature vectors, each vector correspond­
ing to a local window in the original image. There is much evidence in animal visual 
systems supporting the use of multi-channel orientation selective band-pass filters 
in the feature-extraction phase. An open issue is the decision regarding the appro­
priate number of frequencies and orientations required for the representation of the 
input domain. We define an initial set of 15 filters and achieve a computationally 
efficient filtering scheme via the multi-resolution pyramidal approach. 

The learning mechanism shown next derives a minimal subset of the above filters 
which conveys sufficient information about the visual input for its differentiation 
and labeling. In an unsupervised stage a machine-learning clustering algorithm is 
used to quantize the continuous input features. A supervised learning stage follows 
in which labeling of the input domain is achieved using a rule-based network. Here 
an information theoretic measure is utilized to find the most informative correlations 
between the attributes and the pattern class specification, while providing proba­
bility estimates for the output classes. Ultimately, a minimal representation for a 
library of patterns is learned in a training mode, following which the classification 
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Figure 1: System block diagram 
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The initial stage for a classification system is the feature extraction phase. In the 
texture-analysis task there is both biological a.nd computational evidence support­
ing the use of Gabor-like filters for the feature-extraction. In this work, we use 
the Log Gabor pyramid, or the Gabor wavelet decomposition to define an initial 
finite set of filters. A computational efficient. scheme involves using a pyramidal 
representation of the image which is convolved with fixed spatial support oriented 
Gabor filters (Greenspan at aI, 1993). Three scales are used with 4 orientations per 
scale (0,90,45,135 degrees), together with a non-oriented component, to produce a 
15-dimensional feature vector as the output of the feature extraction stage. Using 
the pyramid representation is computationally efficient as the image is subsampled 
in the filtering process. Two such size reduction stages take place in the three scale 
pyramid. The feature values thus generated correspond to the average power of the 
response, to specific orientation and frequency ranges, in an 8 * 8 window of the 
input image. Each such window gets mapped to a 15-dimensional attribute vector 
as the output of the feature extraction stage. 

The goal of the learning system is to use the feature representation described above 
to discriminate between the input patterns, or textures. Both unsupervised and 
supervised learning stages are utilized. A minimal set of features are extracted from 
the 15-dimensional attribute vector, which convey sufficient information about the 
visual input for its differentiation and labeling. 

The unsupervised learning stage can be viewed as a preprocessing stage for achiev­
ing a more compact representation of the filtered input. The goal is to quantize the 
continuous valued features which are the result of the initial filtering, thus shifting 
to a more symbolic representation of the input domain . This clustering stage was 
found experimentally to be of importance as an initial learning phase in a classi­
fication system. The need for discretization becomes evident when trying to learn 
associations between attributes in a symbolic representation, such as rules. 
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The output of the filtering stage consists of N (=15), continuous valued feature 
maps; each representing a filtered version of the original input. Thus, each local 
area of the input image is represented via an N-dimensional feature vector. An 
array of such N-dimensional vectors, viewed across the input image, is the input 
to the learning stage. We wish to detect characteristic behavior across the N­
dimensional feature space, for the family of textures to be learned. In this work, each 
dimension, out of the 15-dimensional attribute vector, is individually clustered. All 
training samples are thus projected onto each axis of the space and one-dimensional 
clusters are found using the K-means clustering algorithm (Duda and Hart, 1973). 
This statistical clustering technique consists of an iterative procedure of finding 
K means in the training sample space, following which each new input sample is 
associated with the closest mean in Euclidean distance. The means, labeled 0 thru K 
minus 1 arbitrarily, correspond to discrete codewords. Each continuous-valued input 
sample gets mapped to the discrete codeword representing its associated mean. The 
output of this preprocessing stage is a 15-dimensional quantized vector of attributes 
which is the result of concatenating the discrete-valued codewords of the individual 
dimensions. 

In the final, supervised stage, we utilize the existing information in the feature 
maps for higher level analysis, such as input labeling and classification. A rule -
based information theoretic approach is used which is an extension of a first order 
Bayesian classifier, because of its ability to output probability estimates for the out­
put classes (Goodman et aI, 1992). The classifier defines correlations between input 
features and output classes as probabilistic rules. A data driven supervised learning 
approach utilizes an information theoretic measure to learn the most informative 
links or rules between features and class labels. The classifier then uses these links 
to provide an estimate of the probability of a given output class being true. When 
presented with a new input evidence vector, a set of rules R can be considered to 
"fire". The classifier estimates the posterior probability of each class given the rules 
that fire in the form log(p( x )IR), and the largest estimate is chosen as the initial 
class label decision. The probability estimates for the output classes can now be 
used for feedback purposes and further higher level processing. 

The rule-based classification system can be mapped into a 3 layer feed forward 
architecture as shown in Fig. 2 (Greenspan et aI, 1993). The input layer contains 
a node for each attribute. The hidden layer contains a node for each rule and the 
output layer contains a node for each class. Each rule (second layer node j) is 
connected to a class via a multiplicative weight of evidence Wj. 

Inputs Rules Class 
Probability 
Estimates 

Figure 2: Rule-Based Network 
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3 Results 

The above-described system has achieved state-of-the-art results on both structured 
and unstructured natural texture classification [5]. In this work we present initial 
results of applying the network to the noisy environment of satellite and air-borne 
Imagery. 

Fig. 3 presents two such examples. The first example (top) is an image of Pasadena, 
California, taken via the AVIRIS system (Airborne Visible/Infrared Imaging Spec­
trometer). rhe AVIRIS system covers 224 contiguous spectral bands simultane­
ously, at 20 meters per pixel resolution. The presented example is taken as an 
average of several bands in the visual range. In this input image we can see that 
a major distinguishing characteristic is urban area vs. hilly surround. These are 
the two categories we set forth to learn. The training consists of a 128*128 image 
sample for each category. The test input is a 512*512 image which is very noisy 
and because of its low resolution, very difficult to segment into the two categories, 
even to our own visual perception. In the presented output (top right), the ur­
ban area is labeled in white, the hillside in gray and unknown, undetermined areas 
are in darker gray. We see that a rough segmentation into the desired regions has 
been achieved. The probabilistic network's output allows for the identification of 
unknown or unspecified regions, in which more elaborate analysis can be pursued 
(Greenspan et aI, 1992). The dark gray areas correspond to such regions; one ex­
ample is the hill and urban contact (bottom right) in which some urban suburbs 
on the hill slopes form a mixture of the classes. Note that in the initial results 
presented the blockiness perceived is the result of the analysis resolution chosen. 
Fusing into the system additional spectral bands as our input, would enable pixel 
resolution as well as enable detecting additional classes (not visually detectable), 
such as concrete material, a variety of vegetation etc. 

A higher resolution Airborne image is presented at the bottom of Fig. 3. The 
classes learned are bush (output label dark gray), ground (output label gray) and a 
structured area, such as a field present or the man-made structures (white). Here, 
the training was done on 128*128 image examples (1 example per class). The input 
image is 800*800. In the result presented (right) we see that the three classes have 
been found and a rough segmentation into the three regions is achieved. Note in 
particular the detection of the bush areas and the three main structured areas in 
the image, including the man-made field, indicated in white. 

Our final example relates to an autonomous navigation scenario. Autonomous ve­
hicles require an automated scene analysis system to avoid obstacles and navigate 
through rough terrain. Fusion of several visual modalities, such as intensity-based 
segmentation, texture, stereo, and color, together with other domain inputs, such 
as soil spectral decomposition analysis, will be required for this challenging task. In 
Fig. 4. we present preliminary results on outdoor photographed scenes taken by an 
autonomous vehicle at JPL (Jet Propulsion Laboratory, Pasadena). The presented 
scenes (left) are segmented into bush and gravel regions (right). The training set 
consists of 4 64 * 64 image samples from each category. In the top example (a 
256*256 pixel image), light gray indicates gravel while black represents bushy re­
gions. We can see that intensity alone can not suffice in this task (for example, top 
right corner). The system has learned some textural characteristics which guided 
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Figure 3: Remote sensing image analysis results. The input test image is shown 
(left) followed by the system output classification map (right). In the AVIRIS (top) 
input, white indicates urban regions, gray is a hilly area and dark gray reflects 
undetermined or different region types. In the Airborne output (bottom), dark 
gray indicates a bush area, light gray is a ground cover region and white indicates 
man-made structures. Both robustness to noise and generalization are demonstrated 
in these two challenging real-world problems. 
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the segmentation in otherwise similar-intensity regions. Note that this is also prob­
ably the cause for identifying the track-like region (e.g., center bottom) as bush 
regions. We could learn track-like regions as a third category, or specifically include 
such examples as gravel in our training set. 
In the second example (a 400*400 input image, bottom) light gray indicates gravel, 
dark gray represents a bush-like region, and black represents the unknown category. 
Here, the top right region of the sky, is labeled correctly as an unknown, or new 
category. Kote that intensity alone would have confused that region as being gravel. 
Overall, the texture classification neural-network succeeds in achieving a correct, 
yet rough, segmentation of the scene based on textural characteristics alone. These 
are encouraging results indicating that the learning system has learned informative 
characteristics of the domain. 

• 

Fig 4: Image Analysis for Autonomous Navigation 
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4 Summary and Discussion 

The presented results demonstrate the network's capability for generalization and 
robustness to noise in very challenging real-world problems. In the presented frame­
work a learning mechanism automates the rule generation. This framework can an­
swer some of the current difficulties in using the human expert's knowledge. Further 
more, the automation of the rule generation can enhance the expert's knowledge 
regarding the task at hand. We have demonstrated that the use of textural spa­
tial information can segment complex scenery into homogeneous regions. Some of 
the system's strengths include generalization to new scenes, invariance to intensity, 
and the ability to enlarge the feature vector representation to include additional 
inputs (such as additional spectral bands) and learn rules characterizing the inte­
grated modalities. Future work includes fusing several modalities within the learn­
ing framework for enhanced performance and testing the performance on a large 
database. 
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