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Abstract

An information-theoretic optimization principle (‘infomax’) has
previously been used for unsupervised learning of statistical reg-
ularities in an input ensemble. The principle states that the input-
output mapping implemented by a processing stage should be cho-
sen so as to maximize the average mutual information between
input and output patterns, subject to constraints and in the pres-
ence of processing noise. In the present work I show how infomax,
when applied to a class of nonlinear input-output mappings, can
under certain conditions generate optimal filters that have addi-
tional useful properties: (1) Output activity (for each input pat-
tern) tends to be concentrated among a relatively small number
of nodes. (2) The filters are sensitive to higher-order statistical
structure (beyond pairwise correlations). If the input features are
localized, the filters’ receptive fields tend to be localized as well.
(3) Multiresolution sets of filters with subsampling at low spatial
frequencies — related to pyramid coding and wavelet representations
— emerge as favored solutions for certain types of input ensembles.

1 INTRODUCTION

In unsupervised network learning, the development of the connection weights is
influenced by statistical properties of the ensemble of input vectors, rather than by
the degree of mismatch between the network’s output and some ‘desired’ output.
An implicit goal of such learning is that the network should transform the input
so that salient features present in the input are represented at the output in a
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more useful form. This is often done by reducing the input dimensionality in a way
that preserves the high-variance components of the input (e.g., principal component
analysis, Kohonen feature maps).

The principle of maximum information preservation (‘infomax’) is an unsupervised
learning strategy that states (Linsker 1988): From a set of allowed input-output
mappings (e.g., parametrized by the connection weights), choose a mapping that
maximizes the (ensemble-averaged) Shannon information that the output vector
conveys about the input vector, in the presence of noise. Such a mapping maximizes
the ensemble-averaged mutual information (MI) between input and output.

This paper (a) summarize earlier results on infomax solutions for linear networks,
(b) identifies some limitations of these solutions (ways in which very different filter
sets are equally optimal from the infomax standpoint), and (c) shows how, by adding
a small nonlinearity to the network, one can remove these limitations and at the
same time improve the utility of the output representations. We show that infomax,
acting on the modified network, tends to favor sparsely coded representations and
(depending on the input ensemble) sets of filters that span multiple resolution scales
(related to wavelets and ‘pyramid coding’).

2 INFOMAX IN LINEAR NETWORKS

For definiteness and brevity, we consider a linear network having a particular type
of noise model and input statistical properties. For a more detailed discussion of
related models see (Linsker 1989).

Since the computation of the MI (which involves the output entropy) is in general
intractable for continuous-valued output vectors, previous work (and the present
paper) makes use of a surrogate MI, which we will call the ‘as-if-Gaussian’ MI. This
quantity is, by definition, computed as though the output vectors comprised a mul-
tivariate Gaussian distribution having the same mean and covariance as the actual
distribution of output vectors. Although expedient, this substitution has lacked a
principled justification. The Appendix shows that, under certain conditions, using
this ‘surrogate MI’ (and not the full MI) is indeed appropriate and justified.

Denote the input vector by S = {S;} (S; is the activity at input node z), the output
vector by Z = {Z,}, the matrix of connection weights by C = {Cy;}, noise at the
input nodes by N = {N;}, and noise at the output nodes by v = {v,}. Then our
processing model is, in matrix form, Z = C (S + N ) +v. Assume that N and v are
Gaussian random va.nables (S)= (N g.‘S'N o) ) (NVT) =0,
and, for the covariance matrices, (S Q, (N N = nI = @ (Angle
brackets denote an ensemble average, superscnpt & denotes tra.nspose, and I and
I' denote unit matrices on the input and output spaces, respectively.) In general,
MI = Hz — (Hz|s) where Hz is the output entropy and Hy|s is the entropy of the
output for given S. Replacing MI by the ‘as-if-Gaussian’ MI means replacing Hz
by the expression for the entropy of a multivariate Gaussian distribution, which is
(apart from an irrelevant constant term) HS = (1/2)Indet Q’, where Q' = (227) =
CQCT + nCCT + BI' is the output covariance. Note that, when S is fixed, Z =
CS+(CN +v) is a Gaussian distribution centered on CS, so that we have (Hz|s) =

(1/2)Indet Q" where Q" = ((CN + v)(CN +v)T) = nCCT + BI'. Therefore the
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‘as-if-Gaussian’ MI is

= (1/2)[Indet Q' — Indet Q"). (1)

The variance of the output at node n (prior to adding noise v,) is V,, = ([C(S +
N)J2) = (CQCT +nCCT)npn. We will constrain the dynamic range of each output
node (limiting the number of output values that can be discriminated from one
another in the presence of output noise) by requiring that V,, = 1 for each n.
Subject to this constraint, we are to find a matrix C that maximizes MI'. For a
local Hebbian algorithm that accomplishes this maximization, see (Linsker 1992).
Here, in order to proceed analytically, we consider a special case of interest.

Suppose that the input statistics are shift-invariant, so that the covariance (S;S;)
is a function of (j — 7). We then use a shift-invariant filter Ansatz, C,; = C(i —n).
Infomax then determines the optimal filter gain as a function of spatial frequency;
i.e., the magnitude of the Fourier components c¢(k) of C(i — n). The derivation is
summarized below.

Denote by g(k), ¢'(k), and ¢"(k) the Fourier transforms of Q(j — i), Q'(m — n),
and Q"(m — n) respectwely Since Q' = CQCT + nCCT + BI', therefore
d'(k) = [g(k) + 1) | c(k) [ +6. Similarly, ¢"(k) = 1 | c(k) [ +5. ‘We obtain
MI' = (1/2)Zk[lng’(k) — Ing”(k)]. Each node’s output variance V;, is equal to

= (1/K)Zi[g(k) +n] | c(k) |*> where K is the number of terms in the sum over k.

To maximize MI' subject to the constraint on V we use the Lagrange multiplier
method; that is, we maximize MI" = MI' + pu(V — 1) with respect to each | ¢(k) |2.
This yields an equation for each k that is quadratic in | ¢(k) |. The unique solution

(1/6) (k) P'= =1 + A1 1 - Loy @)

if the RHS is positive, and zero otherwise. The Lagrange multiplier (< 0) is chosen
so that the {| ¢(k) |} satisfy V = 1.

Starting from a differently-stated goal (that of reducing redundancy subject to a
limit on information loss), which turns out to be closely related to infomax, (Atick
& Redlich 1990a) found an expression for the optimal filter gain that is the same
as that of Eq. 2 except for the choice of constraint.

Filter properties found using this approach are related to those found in early stages
of biological sensory processing. Smoothing and bandpass (contrast-enhancing)
filters emerge as infomax solutions (Linsker 1989, Atick & Redlich 1990a) in certain
cases, and good agreement with retinal contrast sensitivity measurements has been
found (Atick & Redlich 1990b).

Nonetheless, the value of the infomax solution Eq. 2 is limited in two important
ways. First, the phases of the {c(k)} are left undetermined. Any choice of phases is
equally good at maximizing MI' in a linear network. Thus the real-space response
function C(: — n), which determines the receptive field properties of the output
nodes, is nonunique (and indeed may be highly nonlocalized in space).

Second, it is useful to extend the solution Ansatz to allow a number of different filter
types a = 1,..., A at each output site, while continuing to require that each type
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satisfy the shift-invariance condition Cpri(a) = C(i — n;a). For example, one may
want to model a topographic ‘retinocortical’ mapping in which each patch of cortex
(each ‘site’) contains multiple filter types, yet each patch carries out the same set of
processing functions on its input. For this Ansatz, one again obtains Eq. 2 (deriva-
tion omitted here), but with | ¢(k) |> on the LHS replaced by Z,p(a)| c(k;a) |?,
where c(k;a) is the F.T. of C(i — n;a), and p(a) is the fraction of the total number
of filters (at each site) that are of type a. The partitioning of the overall (sum-
squared) gain among the multiple filter types is thus left undetermined.

The higher-order statistical structure of the input (beyond covariance) is not being
exploited by infomax in the above analysis, because (1) the network is linear and (2)
only pairwise correlations among the output activities enter into MI'. We shall show
that if we make the network even mildly nonlinear, MI’ is no longer independent of
the choice of phases or of the partitioning of gain among multiple filter types.

3 NETWORK WITH WEAK NONLINEARITY

We consider the weakly nonlinear input-output relation Z,, = U, +EU,? +X;Cni N; +
Vp, Where U, = Z;C,;S;, for small €. This differs from the linear network analyzed
above by the term in U2. (For simplicity, terms nonlinear in the noise are not
included.) The cubic term increases the signal-to-noise ratio selectively when U, is
large in absolute value. We maximize MI’ as defined in Eq. 1.

Heuristically, the new term will cause infomax to favor solutions in which some
output nodes have large (absolute) activity values, over solutions in which all output
nodes have moderate activities. The output layer can thus encode information
about the input vector (e.g., signal the presence of a feature) via the high activity
of a small number of nodes, rather than via the particular activity values of many
nodes. This has several (interrelated) potential advantages. (1) The concentration
of activity among fewer nodes is a type of sparse coding. (2) The resulting output
representation may be more resistant to noise. (3) The presence of a feature can be
signaled to a later processing stage using fewer connections. (4) Since the particular
nodes that have high activity depend upon the input vector, this type of mapping
transforms a set of continuous-valued inputs at each site into a partially place-coded
representation. A model of this sort may thus be useful for understanding better
the formation of place-coded representations in biological systems.

3.1 MATHEMATICAL DETAILS

This section may be skipped without loss of continuity. In matrix form, U = CS,
W, = U} for each n, and Z = U + eW + CN + v. Keeping terms through first
order in €, the output covariance is Q' = (ZZT) = CQCT + nCCT + BI' + €F,
where F = (WUT)+(UWT). [As an aside, Fppn, = (UnUp (U2+U2)) resembles the
covariance (U, Uy, ), except that presentations having large U2 +U? are given greater
weight in the ensemble average.] For shift-invariant input statistics and one filter
type Cr; = C(i—n), taking the Fourier transform yields ¢’(k) = [q(k)+n]| c(k; a) |?+
B+ ef(k) where f(k) is the F.T. of F(m —n) = Fpp,. SoIndetQ' = i Ing'(k) =
= In{fa(k)+1] | (k) [* +B} +¢Eq(k) where g(k) = [£(k) {la(k)+7] c(k;a) [+ Y.
Using a Lagrange multiplier as before, the quantity to be maximized is MI” =















