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Abstract 

A performance comparison of two self-organizing networks, the Ko­
honen Feature Map and the recently proposed Growing Cell Struc­
tures is made. For this purpose several performance criteria for 
self-organizing networks are proposed and motivated. The models 
are tested with three example problems of increasing difficulty. The 
Kohonen Feature Map demonstrates slightly superior results only 
for the simplest problem. For the other more difficult and also more 
realistic problems the Growing Cell Structures exhibit significantly 
better performance by every criterion . Additional advantages of 
the new model are that all parameters are constant over time and 
that size as well as structure of the network are determined auto­
matically. 

1 INTRODUCTION 

Self-organizing networks are able to generate interesting low-dimensional represen­
tations of high-dimensional input data. The most well-known of these models is 
the Kohonen Feature Map (Kohonen [1982)) . So far it has been applied to a large 
variety of problems including vector quantization (Schweizer et al. [1991)), biolog­
ical modelling (Obermayer, Ritter & Schulten [1990)), combinatorial optimization 
(Favata & Walker [1991]) and also processing of symbolic information(Ritter & 
Kohonen [1989)) . 
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It has been reported by a number of researchers, that one disadvantage of Kohonen's 
model is the fact, that the network structure had to be specified in advance. This is 
generally not possible in an optimal way since a necessary piece of information, the 
probability distribution of the input signals, is usually not available. The choice of 
an unsuitable network structure, however, can badly degrade network performance. 

Recently we have proposed a new self-organizing network model - the Growing Cell 
Structures - which can automatically determine a problem specific network struc­
ture (Fritzke [1992]). By now the model has been successfully applied to clustering 
(Fritzke [1991]) and combinatorial optimization (Fritzke & Wilke [1991]). 

In this contribution we directly compare our model to that of Kohonen. We first 
review some general properties of self-organizing networks and several performance 
criteria for these networks are proposed and motivated. The new model is then 
briefly described. Simulation results are presented and allow a comparison of both 
models with respect to the proposed criteria. 

2 SELF-ORGANIZING NETWORKS 

2.1 CHARACTERlSTICS 

A self-organizing network consists of a set of neurons arranged in some topolog­
ical structure which induces neighborhood relations among the neurons. An n­
dimensional reference vector is attached to every neuron. This vector determines 
the specific n-dimensional input signal to which the neuron is maximally sensitive. 

By assigning to every input signal the neuron with the nearest reference vector 
(according to a suitable norm), a mapping is defined from the space of all possible 
input signals onto the neural structure. A given set of reference vectors thus divides 
the input vector space into regions with a common nearest reference vector. These 
regions are commonly denoted as Voronoi regions and the corresponding partition 
of the input vector space is denoted Voronoi partition. 

Self-organizing networks learn (change internal parameters) in an unsupervised 
manner from a stream of input signals. These input signals obey a generally un­
known probability distribution. For each input signal the neuron with the nearest 
reference vector is determined, the so-called "best matching unit" (bmu). The ref­
erence vectors of the bmu and of a number of its topological neighbors are moved 
towards the input signal. The adaptation of topological neighbors distinguishes 
self-organization ("winner take most") from competitive learning where only the 
bmu is adapted ("winner take all"). 

2.2 PERFORMANCE CRlTERlA 

One can identify three main criteria for self-organizing networks. The importance 
of each criterion may vary from application to application. 

Topology Preservation. This denotes two properties of the mapping defined by 
the network. We call the mapping topology-preserving if 



Kohonen Feature Maps and Growing Cell Structures-a Performance Comparison 125 

a) similar input vectors are mapped onto identical or closely neighboring neu­
rons and 

b) neighboring neurons have similar reference vectors. 

Property a) ensures, that small changes of the input vector cause correspondingly 
small changes in the position of the bmu. The mapping is robust against distortions 
of the input , a very important property for applications dealing with real , noisy data. 
Property b) ensures robustness of the inverse mapping . The topology preservation 
is especially interesting when the dimension of the input vectors is higher than the 
network dimension. Then the mapping reduces the data dimension but usually 
preserves important similarity relations among the input data. 

Modelling of Probability Distribution. A set of reference vectors is said to 
model the probability distribution, ifthe local density of reference vectors in the input 
vector space approaches the probability density of the input vector distribution . 

This property is desirable for two reasons. First, we get an implicit model of the 
unknown probability distribution underlying the input signals. Second, the network 
becomes fault-tolerant against damage, since every neuron is only "responsible" for 
a small fraction of all input vectors . If neurons are destroyed for some reason the 
mapping ability of the network degrades only proportionally to the number of the 
destroyed neurons (soft fail) . This is a very desirable property for technical (as well 
as natural) systems. 

Minimization of Quantization Error . The quantization error for a given input 
signal is the distance between this signal and the reference vector of the bmu . We 
call a set of reference vectors error minimizing for a given probability distribution 
if the mean quantization error is minimized. 

This property is important , if the original signals have to be reconstructed from 
the reference vectors which is a very common situation in vector quantization. The 
quantization error in this case limits the accuracy of the reconstruction . 

One should note that the optimal distribution of reference vectors for error mini­
mization is generally different from the optimal distribution for distribution mod­
elling. 

3 THE GROWING CELL STRUCTURES 

The Growing Cell Structures are a self-organizing network an important feature 
of which is the ability to automatically find a problem specific network structure 
through a growth process. 

Basic building blocks are k-dimensional hypertetrahedrons: lines for k = 1, triangles 
for k = 2, tetrahedrons for k = 3 etc . The vertices of the hypertetrahedrons are the 
neurons and the edges denote neighborhood relations. 

By insertion and deletion of neurons the structure is modified. This is done during a 
self-organization process which is similar to that in Kohonen 's model. Input signals 
cause adaptation of the bmu and its topological neighbors. In contrast to Kohonen's 
model all parameters are constant including the width of the neighborhood around 
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the bmu where adaptation takes place. Only direct neighbors and the bmu itself 
are being adapted. 

3.1 INSERTION OF NEURONS 

To determine the positions where new neurons should be inserted the concept of a 
resource is introduced. Every neuron has a local resource variable and new neurons 
are always inserted near the neuron with the highest resource value. New neurons 
get part of the resource of their neighbors so that in the long run the resource is 
distributed evenly among all neurons. 

Every input signal causes an increase of the resource variable of the best matching 
unit. Choices for the resource examined so far are 

• the summed quantization error caused by the neuron 

• the number of input signals received by the neuron 

Always after a constant number of adaptation steps (e.g. 100) a new neuron is 
inserted. For this purpose the neuron with the highest resource is determined and 
the edge connecting it to the neighbor with the most different reference vector is 
"split" by inserting the new neuron. Further edges are added to rebuild a structure 
consisting only of k-dimensional hypertetrahedrons. 

The reference vector of the new neuron is interpolated from the reference vectors 
belonging to the ending points of the split edge. The resource variable of the new 
neuron is initialized by subtracting some resource from its neighbors) the amount of 
which is determined by the reduction of their Voronoi regions through the insertion. 

3.2 DELETION OF NEURONS 

By comparing the fraction of all input signals which a specific neuron has received 
and the volume of its Voronoi region one can derive a local estimate of the probability 
density of the input vectors. 

Those neurons) whose reference vectors fall into regions of the input vector space 
with a very low probability density) are regarded as "superfluous)) and are removed. 
The result are problem-specific network structures potentially consisting of several 
separate sub networks and accurately modelling a given probability distribution. 

4 SIMULATION RESULTS 

A number of tests have been performed to evaluate the performance of the new 
model. One series is described in the following. 

Three methods have been compared. 

a) Kohonen Feature Maps (KFM) 

b) Growing Cell Structures with quantization error as resource (GCS-l) 

c) Growing Cell Structures with number of input signals as resource (GCS-2) 
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Distribution A: 
The probability density 
is uniform in the unit 
square 

o 
Distribution B: 
The probability density 
is uniform in the lOx 
10-field, by a factor 100 
higher in the 1 x I-field 
and zero elsewhere 
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Distribution C: 
The probability density 
is uniform inside the 
seven lower squares, by 
a factor 10 higher in the 
two upper squares and 
zero elsewhere. 

Figure 1: Three different probability distributions used for a performance compar­
ison. Distribution A is very simple and has a form ideally suited for the Kohonen 
Feature Map which uses a square grid of neurons. Distribution B was chosen to 
show the effects of a highly varying probability density. Distribution C is the most 
realistic with a number of separate regions some of which have also different prob­
ability densities. 

These models were applied to the probability distributions shown in fig. 1. The Ko­
honen model was used with a 10 x 10-grid of neurons. The Growing Cell Structures 
were used to build up a two dimensional cell structure of the same size. This was 
achieved by stopping the growth process when the number of neurons had reached 
100. 

At the end of the simulation the proposed criteria were measured as follows: 

• The topology preservation requires two properties. Property a) was mea­
sured by the topographical product recently proposed by Bauer e.a. for this 
purpose (Bauer & Pawelzik [1992]). Property b) was measured by com­
puting the mean edge length in the input space, i.e. the mean difference 
between reference vectors of directly neighboring neurons. 

• The distribution modelling was measured by generating 5000 test signals 
according to the specific probability distribution and counting for every 
neuron the number of test signals it has been bmu for. The standard 
deviation of all counter values was computed and divided by the mean 
value of the counters to get a normalized measure, the distribution error, 
for the modelling of the probability distribution. 

• The error minimization was measured by computing the mean square quan­
tization error of the test signals. 

The numerical results of the simulations are shown in fig. 2. Typical examples of 
the final network structures can be seen in fig. 3. It can be seen from fig. 2 that the 
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model A B C model A B C 

KFM 0.022 0.048 KFM 0.092 0.110 
GCS-1 0.014 0.044 GCS-1 0.11 10.056 1 0.015 
GCS-2 10.0111 10.019 1 GCS-2 0.11 0.071 10.0131 

a) topographical product b) mean edge length 
model A B C model A B C 

KFM 0.84 0.90 KFM 0.0020 0.00077 0.00086 

GCS-1 §I] 10.591 GCS-1 0.0019 0.00089 0.00010 

GCS-2 0.26 1.57 0.73 GCS-2 0.0019 10.000551 10.000041 

c) distribution error d) quantization error 

Figure 2: Simulation results of the performance comparison. The model of Koho­
nen(KFM) and two versions of the Growing Cell Structures have been compared 
with respect to different criteria. All criteria are such, that smaller values are better 
values. The best (smallest) value in each column is enclosed in a box. Simulations 
were performed with the probability distributions A, Band C from fig. 1. 

model of Kohonen has superior values only for distribution A, which is very regular 
and formed exactly like the chosen network structure (a square). Since generally 
the probability distribution is unknown and irregular, the distributions Band C are 
by far more realistic. For these distributions the Growing Cell Structures have the 
best values. 

The modelling of the distribution and the minimization of the quantization error 
are generally concurring objectives. One has to decide which objective is more 
important for the current application. Then the appropriate version ofthe Growing 
Cell Structures can optimize with respect to that objective. For the complicated 
distribution C, however, either version of the Growing Cell Structures performs for 
every criterion better than Kohonen's model. 

Especially notable is the low quantization error for distribution C and the error 
minimizing version (GCS-2) of the Growing Cell Structures (see fig. 2d). This 
value indicates a good potential for vector quantization. 

5 DISCUSSION 

Our investigations indicate that - w.r.t the proposed criteria - the Growing Cell 
Structures are superior to Kohonen's model for all but very carefully chosen trivial 
examples. Although we used small examples for the sake of clarity, our experiments 
lead us to conjecture, that the difference will further increase with the difficulty and 
size of the problem. 

There are some other important advantages of our approach. First, all parameters 
are constant. This eliminates the difficult choice of a "cooling schedule" which 
is necessary in Kohonen's model. Second, the network size does not have to be 
specified in advance. Instead the growth process can be continued until an arbitrary 
performance criterion is met. To meet a specific criterion with Kohonen's model, 
one generally has to try different network sizes. To start always with a very large 
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Distribution A Distribution B Distribution C 
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Figure 3: Typical simulation results for the model of Kohonen and the two ver­
sions of the Growing Cell Structures. The network size is 100 in every case. The 
probability distributions are described in fig. 1. 

a) Kohonen Feature Map (KFM). For distributions Band C the fixed network 
structure leads to long connections and neurons in regions with zero probability 
density. 

b) Growing Cell Structures, distribution modelling variant (GCS-1). The growth 
process combined with occasional removal of "superfluous" neurons has led to sev­
eral sub networks for distributions Band C. For distribution B roughly half of 
the neurons are used to model either of the squares. This corresponds well to the 
underlying probability density. 

c) Growing Cell Structures, error minimizing variant (GCS-2). The difference to 
the previous variant can be seen best for distribution B, where only a few neurons 
are used to cover the small square. 
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network is not a good solution to this problem, since the computational effort grows 
faster than quadratically with the network size. 

Currently applications of variants of the new method to image compression and 
robot control are being investigated. Furthermore a new type of radial basis function 
network related to (Moody & Darken [1989]) is being explored, which is based on 
the Growing Cell Structures. 
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