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Abstract 

Which processes underly our ability to quickly recognize familiar 
objects within a complex visual input scene? In this paper an imple­
mented neural network model is described that attempts to specify 
how selective visual attention, perceptual organisation, and invari­
ance transformations might work together in order to segment, select, 
and recognize objects out of complex input scenes containing multi­
ple, possibly overlapping objects. Retinotopically organized feature 
maps serve as input for two main processing routes: the 'where­
pathway' dealing with location information and the 'what-pathway' 
computing the shape and attributes of objects. A location-based at­
tention mechanism operates on an early stage of visual processing 
selecting a contigous region of the visual field for preferential proces­
sing. Additionally, location-based attention plays an important role 
for invariant object recognition controling appropriate normalization 
processes within the what-pathway. Object recognition is supported 
through the segmentation of the visual field into distinct entities. In 
order to represent different segmented entities at the same time, the 
model uses an oscillatory binding mechanism. Connections between 
the where-pathway and the what-pathway lead to a flexible coope­
ration between different functional subsystems producing an overall 
behavior which is consistent with a variety of psychophysical data. 
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1 INTRODUCTION 

We are able to recognize a familiar object from many different viewpoints. Addi­
tionally, an object normally does not appear in isolation but in combination with 
other objects. These varying viewing conditions produce very different retinal neural 
representations. The task of the visual system can be considered as a transformation 
process forming high-level object representations which are invariant with respect to 
different viewing conditions. Selective attention and perceptual organisation seem to 
play an important. role in this transformation process. 

1.1 LOCATION-BASED VS OBJECT-BASED ATTENTION 

N eisser (1967) assumed that visual processing is done in two stages: an early stage 
that operates in parallel across the entire visual field, and a later stage that can 
only process information from a limited part of the field at anyone time. Neisser 
(1967) proposed an object-based approach to selective attention: the first, 'preatten­
tive', stage segments the whole field into seperate objects on the basis of Gestalt 
principles; the second stage, focal attention, selects one of these objects for detailed 
analysis. 
Other theories stress the location-based nature of visual attention: a limited contigous 
region is filtered for detailed analysis (e.g., Posner et al., 1980). There exists a num­
ber of models of location-based at.tention (e .g., Hinton & Lang, 1985; Mozer, 1991; 
Sandon, 1990) and a few models of object-based attention using whole object kno­
wledge (e.g., Fukushima, 1986). Our model attempts to integrate both approaches: 
location-based attention - implemented as a 'spotlight' - operates on an early stage 
of visual processing selecting a contigous region for detailed processing. However, the 
position and the size of the attentional window is determined to a large extent from 
the results of a segmentation process operating at different levels within the system. 

1.2 DYNAMIC BINDING 

The question of how groupings can be represented in a neural network is known as 
the binding problem. It occurs in many variations, e.g., as the problem of how to 
represent multiple objects simultaneously but sufficiently distinct that confusions ('il­
lusory conjunctions') at later processing stages are avoided. 
An interesting solution of the binding problem is based on ideas proposed by Mil­
ner (1974) and von der Malsburg (1981). In contrast to most connectionist models 
assuming that only the average output activity of neurons encodes important informa­
tion, they suggest that the exact timing of neuronal activity (the firing of individual 
neurons or the 'bursting' of cell groups) plays an important role for information pro­
cessing in the brain. The central idea is that stimulated units do not respond with a 
constant output but with oscillatory bellavior which can be exploited to represent fea­
ture linkings. A possible solution for representing multiple objects might be that the 
parts of one object are bound together through synchronized (phase-locked) oscillati­
ons and separated from other objects through an uncorellated phase relation. Recent 
empirical findings (Eckhorn et al., 1988; Gray & Singer, 1989) provide some evidence 
that the brain may indeed use phase-locked oscillations as a means for representing 
global object properties. 
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2 THE MODEL 

2.1 SYSTEM DYNAMICS 

In order to establish dynamic binding via phase-locked oscillations the units of the 
model must be able to exhibit oscillatory behavior . Stimulated from the empirical 
findings mentioned earlier, a rapidly growing number of work has studied populations 
of oscillating units (e.g., Eckhorn et al., }990; Sompolinsky et al., }990). There exists 
also a number of models using phase-locked oscillations in order to simulate various 
aspects of perceptual organisation (e.g., Schillen & Konig, 1991; Mozer, Zemel, Behr­
mann & Williams, 1992). We defined computationally simple model neurons which 
allow to represent independently an activation value and a period value. Such a mo­
del neuron possesses two types of input areas: the activation gate (a-gate) and the 
period-gate (p-gate) which allow the model neurons to communicate via two types of 
connections (cf. Eckhorn et al., }990; they distinguish between 'feeding' and 'linking' 
connections). We make the following definitions: 

• wfj: weight from model neuron j to the a-gate of model neuron i. 

• wfj: weight from model neuron j to the p-gate of model neuron i. 

• ~i(t): internal time-keeper of unit i 

• T: globally defined period length 

• 7i (N): period length of unit i (Nth oscillation) 

Each model neuron possesses an internal time-keeper ~i(t) counting the number of 
bins elapsed since the last firing point. A model neuron is refractory until the time­
keeper reaches the value Ii (e.g., Ii = T = 8). Then it may emit an activation value 
and resets the time-keeper. Depending on the stimulation received at the p-gate 
(see below) a model neuron fires either if ~ = T - } or ~ = T. This variation of 
the individual period length Ii is the only possibility for a unit to change its phase 
relation to other units. The value of the globally defined period length T determines 
directly how many objects may be represented 'simultaneously'. 
The activation value aj at the internal time ~ is determined as follows: 

T. n 

neti(~ = Td = L L wfjaj(O 
(=lj=l 

if ~ = Ti 
otherwise 

(1) 

(2) 

where u(x) is the logistic (sigmoidal) function. If we consider an extreme case with 
T = 1 we obtain the following equations: 

n 

netj(t) = L W0 aj (3) 
j=l 



906 Goebel 

(4) 

This derivation allows us to study the same network as a conventional connectionist 
network (T = 1) with a 'non-oscillatory' activation function to which we can add a 
dynamic binding mechanism by simply setting T > 1. In the latter case the input 
at the p-gate determines the length of the current period as either Ii = T - 1 or 
Ii = T. The decision to shift the phase relation to other neurons should be done in 
such a way that the 'belongingness constraints' imposed by the connectivity pattern 
of the p-weights wfj is maximized, e.g., if two units are positively p-coupled they 
should oscillate in phase, if they are negatively p-coupled they should oscillate out 
of phase. The decision whether a unit fires at T - 1 or T depends on two values, 
the stimulation received during the refractory period 1 < f. < Ii (N - 1) and on the 
stimulation received at the last firing point f. = Ti(N - 1). These values behave as 
two opposite forces gi determining the probability Pj< of shortening the next period: 

1- 2r 
p.< = r + --~~~ 

z 1 + e(g~-g~) 

if f. = Ii 

if 1 < f. < Ti 

(5) 

(6) 

(7) 

If the value of gl-gl is large (e.g., there are many positively p-coupled units firing at 
the same time) it is unlikely that the unit shortens its next period length. If instead 
the value of gl- gl is large (e.g., there are many positively coupled neurons firing just 
before the considered unit) it is likely that the unit will shorten its next period. There 
exists also a small overall noise level r = 0.01 which allows for symmetry breaking 
(e.g., if two strongly negatively coupled neurons are accidentally phase-locked). 

2.2 THE INPUT MODULE 

Figure 1 shows an overview of the architecture of the model, called HOTSPOT. An 
input is presented to the model by clamping on units at the model-retina consisting 
of two layers with 15x25 units. Each layer is meant to correspond to a different 
color-sensitive ganglion cell type. The retinal representation is then analyzed within 
different retinotopically organized feature maps (4 oriented line segments and 2 uno­
riented color blobs) as a simplified representation of an early visual processing stage 
(corresponding roughly to VI). A lateral connectivity pattern of p-weights within 
and between these feature maps computes initial feature linkings consistent with the 
findings of Eckhorn et al., (1988) and Gray and Singer (1989). Each feature map also 
projects to a second feature-specific layer. The weights between those layers compute 
the saliency at each position of a particular feature type. These saliency values are 
finally integrated within the saliency map. The retinotopic feature maps project to 
both the what pathway, corresponding roughly to the occipito-temporal processing 
stream and the where-pathway, corresponding to the occipita-parietal stream (e.g., 
Ungerleider & Mishkin, 1982). 
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2.3 THE SPOTLIGHT-LAYER 

The spotlight-layer receives bottom-up input from the feature maps via the saliency 
map and top-down input from the spotlight-control module. Based on these sources 
of stimulation, the spotlight layer computes a circular region of activity representing 
the current focus of spatial attention. The spotlight-layer corresponds roughly to the 
pulvinar nucleus of the thalamus. The spotlight-layer gates the flow of information 
within the what-pathway. 

2.4 THE WHAT-PATHWAY: FROM FEATURES TO OBJECTS 

Processing within the what-pathway includes spatial selection, invariance transfor­
mation, complex grouping, object-based selection and object recognition. 

2.4.1 The Invariallce Module 

The task of the Invariance module is to retain the spatial arrangement of the features 
falling within the attentional spotlight while abstracting at the same time the absolute 
retinal position of the att.ended information. This goal is achieved in several stages 
along the what-pathway for each feature type. The basic idea is that each neuron 
connects to several neurons at the next layer. If a certain position is not attended 
its 'standard' way may be 'open'. If, however, a position is attended, the decision 
which way is currently gated for a neuron depends on the position and width of 
the attentional spotlight. Special control layers compute explicitly whether a certain 
absolute position falls within one of 5 horizontal and 5 vertical regions of the spotlight 
(e.g., the horizontal regions are 'far left', 'near left', 'center', 'near right', 'far right'). 
These layers gate the feedforward-synapses within the what-pathway. Finally, the 
selected information reaches the invariance-output layers which have a 7x7 resolution 
for each feature type. Recently Olshausen, Anderson and Van Essen (1992) proposed 
a strikingly similar approach for forming invariant representations. 
Despite invariance transformations the representation of an object at the invariance­
output layers may not be exactly the same as in previous experiences. Therefore the 
model uses additional processes contributing to invariant object recognition, most 
importantly the extraction of global features and the exploitation of population codes 
for the length, position and orientation of features. This also establishes a limited 
kind of rotation invariance. The selection of information within the what-pathway is 
consistent with findings from Moran & Desimone (1985): unattended information is 
excluded from further processing only, if it would stimulate the same population of 
neurons at the next stage as the selected information. 

2.4.2 The Object-Recogllition-Module 

The output of the Invariance Module, the perceptual-code stage, feeds to the object­
recognition layer and receives recurrent connections from that layer terminating both 
on the a-gate and the p-gate of its units. These connections are trained using the 
back-propagation learning rule (T = T = 1). The recurrent loop establishes an 
interactive recognition process allowing to recognize distorted patterns through the 
completion of missing informat.ion and the suppression of noise. 
At the perceptual-code stage perceptual organisation continues based on the initial 
feature linkings computed within the elementary feature maps. The p-weight pattern 
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Figure 1: The architecture of HOTSPOT 
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within the perceptual-code stage implements a set of Gestalt principles such as spatial 
proximity, similarity and continuity of contour. In additon, acquired shape knowledge 
is another force acting on the perceptual-code stage in order to bind or separate global 
features. Object-based attention may select one of multiple oscillating objects. For 
determining a specific object it may use whole-object knowledge (e.g., 'select the 
letter H'), spatial cues (e.g., 'select the right object') or color cues (e.g., 'select the 
green object') as well as a combined cue. If the selected object does not use the whole 
resolution of the perceptual-code stage, commands are sent to the where-pathway in 
order to adjust the spotlight accordingly. 

2.5 THE WHERE-PATHWAY 

The where-pathway consists of the saliency map, the spotlight-control module, the di­
sengagement layer and the spatial-representation layer. The spotlight-control module 
performs relative movements and size changes of the attentional spotlight which are 
demanded by the saliency map, object-based selection or commands from a short-term 
store holding task instructions. If the current position of the spotlight is not changed 
for some time, the disengagement layer inhibits the corresponding position at the sa­
liency map. The spatial-representation layer contains a coarsely tuned representation 
of all active retinal positions. If no position within the visual field is particularly 
salient, this layer determines possible target positions for spatial attention. 

If the model knows "where what is" this knowledge is transferred to the visual short­
term memory where a sequence of 'location-object couplings' can be stored. 

3 CONCLUSION 

In this paper an oscillator neural network model was presented that integrates 
location-based attention, perceptual organisation, and invariance transformations. 
It was outlined how the cooperation between these mechanisms allow the model to 
segment, select and recognize objects within a complex input scene. The model was 
successfully applied to simulate a wide variety of psychophysical data including tex­
ture segregation, visual search, hierarchical segmentation and recognition. A typical 
'processing cycle' of the model consists of an initial segmentation of the visual field 
with a broadly tuned spotlight. Then a segmented, but not necessarily recogniza­
ble, entity may be selected due to its saliency or by object-based attention. This 
selection in turn induces movements of the location-based attention mechanism until 
the selected entity is surrounded by the spotlight. Since in this case appropriate 
invariance transformations are computed the selected object is optimally recognized. 
Some predictions of the model concerning the object-based nature of selective at­
tention are currently experimentally tested. HOTSPOT indicates a promising way 
towards a deeper understanding of complex visual processing by bringing together 
both neurobiological and psychophysical findings in a fruitful way. 
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