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Abstract

Hidden Markov Models (HMMs) can be applied to several impor-
tant problems in molecular biology. We introduce a new convergent
learning algorithm for HMMs that, unlike the classical Baum-Welch
algorithm is smooth and can be applied on-line or in batch mode,
with or without the usual Viterbi most likely path approximation.
Left-right HMMs with insertion and deletion states are then trained
to represent several protein families including immunoglobulins and
kinases. In all cases, the models derived capture all the important
statistical properties of the families and can be used efficiently in
a number of important tasks such as multiple alignment, motif de-
tection, and classification.
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1 INTRODUCTION

Hidden Markov Models (e.g., Rabiner, 1989) and the more general EM algorithm in
statistics can be applied to the modeling and analysis of biological primary sequence
information (Churchill (1989), Lawrence and Reilly (1990), Baldi et al. (1992),
Cardon and Stormo (1992), Hzussler et al. (1992)). Most notably, as in speech
recognition applications, a family of evolutionarily related sequences can be viewed
as consisting of different utterances of the same prototypical sequence resulting from
a common underlying HMM dynamics. A model trained from a family can then be
used for a number of tasks including multiple alignments and classification. The
multiple alignment is particularly important since it reveals the highly conserved
regions of the molecules with functional and structural significance even in the
absence of any tertiary information. The multiple alignment is also an essential
tool for proper phylogenetic tree reconstruction and other important tasks. Good
algorithms based on dynamic programming exist for the alignment of two sequences.
However they scale exponentially with the number of sequences and the general
multiple alignment problem is known to be NP-complete. Here, we briefly present
a new algorithm and its variations for learning in HMMs and the results of some of
the applications of this approach to new protein families.

2 HMMs FOR BIOLOGICAL PRIMARY SEQUENCES

A HMM is characterized by a set of states, an alphabet of symbols, a probability
transition matrix T' = (%;;) and a probability emission matrix e;;. As in speech
applications, we are going to consider left-right architectures: once a given state is
left it can never be visited again. Common knowledge of evolutionary mechanisms
suggests the choice of three types of states (in addition to the start and to the
end state): the main states m;y,...,my, the delete states dj, ..., dy4+1 and the insert
states 1, ...,in41. N is the length of the model which is usually chosen equal to the
average length of the sequences in the family and, if needed, can be adjusted in later
stages. The details of a typical architecture are given in Figure 1. The alphabet
has 4 letters in the case of DNA or RNA sequences, one symbol per nucleotide,
and 20 letters in the case of proteins, one symbol per amino acid. Only the main
and insert states emit letters, while the delete states are of course mute. The
linear sequence of state transitions start — m; — ma — ... —» my — end is the
backbone of the model and correponds to the path associated with the prototypical
sequence in the family under consideration. Insertions and deletions are defined
with respect to this backbone. Insertions and deletions are treated symmetrically
except for the loops on the insert states needed to account for multiple insertions.
The adjustable parameters of the HMM provide a natural way of incorporating
variable gap penalties. A number of other architectures are also possible.

3 LEARNING ALGORITHMS

Learning from examples in HMMs is typically accomplished using the Baum-Welch
algorithm. In the Baum-Welch algorithm, the expected number n;; (resp. m;)
of i — j transitions (resp. emissions of letter j from state 7) induced by the data
are calculated using the forward-backward procedure. The transition and emission
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Figure 1: The basic left-right HMM architecture. S and E are the start and end
states.

probabilities are then reset to the observed frequencies by

Wi ——
t?_;—:nL: and e}'}:m—': (1)
where n; = Ej n;; and m; = ZJ. m;;. It is clear that this algorithm can lead to
abrupt jumps 1n parameter space and that the procedure cannot be used for on-
line learning (after each training example). This is even more so if, in order to
save some computations, the Viterbi approximation is used to estimate likelihoods
and transition and emission statistics by computing only the most likely paths as

opposed to the forward-bacward procedure where all possible paths are examined.

A new algorithm for HMM learning which is smooth and can be used on-line or in
batch mode, with or without the Viterbi approximation, can be defined as follows.
First, we use a Boltzmann-Gibbs representation for the parameters. For each {;;
(resp. eij) we define a new parameter w;; (resp. v;;) by

evii evis

hi= S e 20 e = o (2)

Normalisation constraints are naturally enforced by this representation throughout
learning with the added advantage that none of the parameters can reach the ab-
sorbing value 0. After computing on-line or in batch mode the statistics n;; and
m;; using the forward-backward procedure (or the usual Viterbi approximation),
the update equations are particularly simple and given by

ng; mi;
Aw;;j =ﬂ(n+f——t;,') and Av;; :q(_';f__e‘.j) (3)

where 7 is the learning rate. In Baldi et al. (1992) a proof is given that this
algorithm must converge to a maximum of the product of the likelihoods of the
training sequences. In the case of an on-line Viterbi approximation, the optimal
path associated with the current training sequence is first computed. The update
equations are then given by

Awij = n(t}; — ti;) and Avy; = n(t5; — eij) (4)
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Here, for a fixed state i, t{; and §; are the target transition and emission val-

ues: tﬁj = 1 every time the transition s; — s; is part of the Viterbi path of the
corresponding training sequence sequence and 0 otherwise and similarly for ¢f;.

After training, the model derived can be used for a number of tasks. First, by
computing for each sequence its most likely path through the model using the
Viterbi algorithm, multiple sequences can be aligned to each other in time O(K N?),
linear in the number K of sequences. The model can also be used for classification
and data base searches. The likelihood of any sequence (randomly generated or
taken from any data base) can be calculated and compared to the likelihood of the
sequences in the family being modeled. Additional applications are discussed in

Baldi et al. (1992).

4 EXPERIMENTS AND RESULTS

The previous approach has been applied to a number of protein families including
globins, immunoglobulins, kinases, aspartic acid proteases and G-coupled receptor
proteins. The first application and alignment of the globin family using HMMs
(trained with the Viterbi approximation of the Baum-Welch algorithm, and a num-
ber of additional heuristics) was given by Haussler et al. (1992). Here, we briefly
describe some of our results on the immunoglobulin and the kinase families !.

41 IMMUNOGLOBULINS

Immunoglobulins or antibodies are proteins produced by B cells that bind with
specificity to foreign antigens in order to neutralize them or target their destruction
by other effector cells (e.g., Hunkapiller & Hood, 1989). The set of sequences used in
our experiments consists of immunoglobulins V region sequences from the Protein
Identification Resources (PIR) data base. It corresponds to 294 sequences, with
minimum length 90, average length 117 and maximum length 254. The variation in
length resulted from including any sequence with a V region, including those that
also included signal or leader sequences, germline sequences that did not include the
J segment, and some that contained the C region as well. Seventy seqences contained
one or more special characters indicating an ambiguous amino acid determination
and were removed.

For the immunoglobulins variable V regions, we have trained a model of length 117
using a random subset of 150 sequences. Figure 2 displays the alignment corre-
sponding to the first 20 sequences in this random subset. Letters emitted from the
main states are upper case and letters emitted from insertion states are lower case.
Dashes represent deletions or accomodate for insertions. As can be observed, the
algorithm has been able to detect all the main regions of highly conserved residues.
Most importantly, the cysteine residues towards the beginning and the end respon-
sible for the disulphide bonds which holds the chains together are perfectly aligned
and marked. The only exception is the fifth sequence from the bottom which has
a serine residue in its terminal portion. It is also important to remark that some

1Recently, Hausssler et al. have also independently applied their approach to the kinase
family (Haussler, private communication).
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-p-KLLI-YKV---SNR-FSGVPDRFSGSG-—SGTDFTLKISRVEAEDLGIYFCSQ
E-WIGRI-DPNSGGTKY-NEKFKNKATLTINKPSNTAYMQLSSLTSDDSAVYYCARGYDYSYY——————-
E-WVAEIrLKSGYATHY-AESVKGRFTISRDDSKSSVYLOMNNLRAEDTGIYYCTRPGV—=————=———=—
Q-WVGQIKNKVDGGTIDYAAPVKGRF IISRDDSKSTVYLOMNRLKIEDTAVYYCVGNYTGT———=————~
K-WMGWI-NTYTGEPTY-ADDFKGRFAFSLETSASTAYLQINNLKNEDTATYFCARGSSYDYY———-——=
E-WIGLI-IPSNGGTNY-NQKFKDKASLTVDKSSSTAYMELLSLTSEDSAVYYCARPSYYGSRnyy——-—-—
E-WVAAI-SSGGSYTFY-PDSVKGRFTISRDNAKNTLYLQINSLRSEDTAIYYCAREEGLRLDdy---—-—
E-WLGRT-YYRSKWYNDYAVSVKSRITINPDTSKNQFSLQLNSVTPEDTAVYYCARELGDA-————=~===
-p-KLLI-YKV---SNR-VSGVPDRFSGSG--SGTDFTLKISRVEAEDLGVYFCSQSTHV——————————
E-WIAASrNEANDYTTEYSASVKGRFIVSRDTSQSILYLOMIALRAEDTAIYYCSRDYYGSSYW———===
E-WIGEI-DPSNSYTNN-NQKFKNKATLTVDKSSNTAYMQLSSLTSEDSAVYYCARWGTGSSWg——————
E-WIGEI-NPDSSTINY-TPSLKDKFIISRDNAKNTLYLOQMSKVRSEDTALYYCARLHYYGY————————
E-WIAASrNKAHDYTTEYSASVKGRFIVSRDTSQSILYLOMNALRAEDTAIYYCARDADYGSSshw————
E-WVANI-KQDGSEKYY-VDSVKGRFTISRDNAKNSLYLOMNSLRAEDTAVYYCAR:
E-WVGRIkKkSKTDGGTTDYAAPVKGRFTISRDDSKNTLYLOMNSLKTEDTAVYYCTTDRGGSSQ=—=————
E-WVATI-SSGGRYTYY-SDSVKGRFTISRDNAKNTLYLQMSSLRSEDTAMYYSTASGDS —————————~—
E-WIGGI-NPNNGGTSY-NQKFKGKATLTVDKSSSTAYMELRSLTSEDSAVYYCARRGLTTVVaksy-—-
E-WMGYI-NYDGS-NNY-NPSLKNRISVTRDTSKNQFFLKMNSVTTEDTATYYCARLIPFSDGyyedyy-
E-WIGGV-YYTGS-IYY-NPSLRGRVTISVDTSRNQFSLNLRSMSAADTAMYYCARGNPPPYYdigtgsd
E-WIAASrNKANDYTTEYSASVKGRFIVSRDTSQSILYLOMNALRAEDTAIYYCARDYYGSSYVW=—————

tthvpptfgggtkleikr-
—AMDYWGQGTSVTVSS
—=PDYWGQGTTLTVSS
——VDYWGQGTLVTVSS~ ——
—AMDYWGQGTSVTVSS —_———
-BMDYWGQGTSVTVSSak ———

—-AMDYWGQGTSVTVS
—=FDIWGQGTMVTVSS
-YFDVWGAGTTVTVSS
-WFAYWGQGTLVTVSA
—=AAYWGQGTLVTVSAe
=YFDVWGAGTTVTVSS

-=-GDYWGQGTLVTVSS~
—-FDYWGQGTTLTVSSak
-YFDYWGQGTTLTVSS
-AMDYWGQGT i
dGIDVWGQGTTVHVSS
-YFDVWGAGTTVTVSS —_—— s

Figure 2: Immunoglobulin alignment.
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of the sequences in the family have some sort of “header” (leader signal peptide)
whereas the others do not. We did not remove the headers prior to training and
used the sequences as they were given to us. The model was able to detect and
accomodate these “headers” by treating them as initial inserts as can be seen from
the alignment of two of the sequences.

4.2 KINASES

Eukaryotic protein k'nases coustitute a very large family of proteins that regu-
late the most basic of cellular processes through phosphorylation. They have been
termed the “transistors” of the cell (Hunter (1987)). We have used the sequences
available in the kinase data base maintained at the Salk Institute. Our basic set
consists of 224 sequences, with minimum length 156, average length 287, and max-
imal length 569. Only one sequence containing a special symbol (X) was discarded.
In one experiment, we trained a model of length 287 using a random subset of
150 kinase sequences. Figure 3 displays the corresponding alignment for a subset
of 12 phylogenetically representative sequences. These include serine/threonine,
tyrosine and dual specificity kinases from mammals, birds, fungi and retroviruses
and herpes viruses. The percentage of identical residues within the kinase data
sets ranges from 8-30%, suggesting that only those residues involved in catalysis
are conserved among these highly divergent sequences. All the 12 characteristic
catalytic domains or subdomains described in Hanks and Quinn (1991) are easily
recognizable and marked. Additional highly conserved positions can also be ob-
served consistent with previously constructed multiple alignments. For instance,
the initial hydrophobic consensus Gly-X-Gly-XX-Gly together with the Lys located
15 or 20 residues downstream are part of the ATP/GTP binding site. The carboxyl
terminus is characterized by the presence of an invariant Arg residue. Conserved
residues in proximity to the acceptor amino acid are found in the VIb (Asp), VII
(Asp-Phe-Gly) and VIII domains (Ala-Pro-Glu). In Figure 4, the entropy of the
emission distribution of each main state is plotted: motifs are easily detectable and
correspond to positions with very low entropy.

5 DISCUSSION

HMMs are emerging as a powerful, adaptive, and modular tool for computational
biology. Here, they have been used, together with a new learning algorithm, to
model families of proteins. In all cases, the models derived capture all the important
statistical properties of the families. Additional results and potential applications,
such as phylogenetic tree reconstruction, classification, and superfamily modeling,
are discussed in Baldi et al. (1992).
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Figure 3: Kinase alignment of 12 representative sequences.
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Figure 4: Kinase emission entropy plot and distribution.
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