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Abstract 

Network vision systems must make inferences from evidential informa­
tion across levels of representational abstraction, from low level invariants, 
through intermediate scene segments, to high level behaviorally relevant 
object descriptions. This paper shows that such networks can be realized 
as Markov Random Fields (MRFs). We show first how to construct an 
MRF functionally equivalent to a Hough transform parameter network, 
thus establishing a principled probabilistic basis for visual networks. Sec­
ond, we show that these MRF parameter networks are more capable and 
flexible than traditional methods. In particular, they have a well-defined 
probabilistic interpretation, intrinsically incorporate feedback, and offer 
richer representations and decision capabilities. 

1 INTRODUCTION 

The nature of the vision problem dictates that neural networks for vision must make 
inferences from evidential information across levels of representational abstraction. 
For example, local image evidence about edges might be used to determine the 
occluding boundary of an object in a scene. This paper demonstrates that parameter 
networks [Ballard, 1984], which use voting to bridge levels of abstraction, can be 
realized with Markov Random Fields (MRFs). 

We show two main results. First, an MRF is constructed with functionality formally 
equivalent to that of a parameter net based on the Hough transform. Establishing 
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this equivalence provides a sound probabilistic foundation for neural networks for 
vision. This is particularly important given the fundamentally evidential nature of 
the vision problem. 

Second, we show that parameter networks constructed from MRFs offer a more 
flexible and capable framework for intermediate vision than traditional feedforward 
parameter networks with threshold decision making. In particular, MRF parame­
ter nets offer a richer representational framework, the potential for more complex 
decision surfaces, an integral treatment of feedback, and probabilistically justified 
decision and training procedures. Implementation experiments demonstrate these 
features. 

Together, these results establish a basis for the construction of integrated network 
vision systems with a single well-defined representation and control structure that 
intrinsically incorporates feedback. 

2 BACKGROUND 

2.1 HOUGH TRANSFORM AND PARAMETER NETS 

One approach to bridging levels of abstraction in vision is to combine local, highly 
variable evidence into segments which can be described compactly by their pa­
rameters. The Hough transform offers one method for obtaining these high-level 
parameters. Parameter networks implement the Hough transform in a parallel 
feedforward network. The central idea is voting: local low-level evidence cast votes 
via the network for compatible higher-level parameterized hypotheses. The clas­
sic Hough example finds lines from edges. Here local evidence about the direction 
and magnitude of image contrast is combined to extract the parameters of lines 
(e.g. slope-intercept), which are more useful scene segments. The Hough transform 
is widely used in computer vision (e.g. [Bolle et al., 1988]) to bridge levels of 
abstraction. 

2.2 MARKOV RANDOM FIELDS 

Markov Random Fields offer a formal foundation for networks [Geman and Geman, 
1984] similar to that of the Boltzmann machine. MRFs define a prior joint prob­
ability distribution over a set X of discrete random variables. The possible values 
for the variables can be interpreted as possible local features or hypotheses. Each 
variable is associated with a node S in an undirected graph (or network), and can 
be written as X,. An assignment of values to all the variables in the field is called 
a configuration, and is denoted Wi an assignment of a single variable is denoted w,. 
Each fully-connected neighborhood C in a configuration of the field has a weight, 
or clique potential, Vc. 

We are interested in the probability distributions P over the random field X. 
Markov Random Fields have a locality property: 

P(X, = w,IXr = Wr,r E S,r '# s) = P(X, = w,lXr = Wr,r EN,) (1) 

that says roughly that the state of site is dependent only upon the state of its 
neighbors (N,). MRFs can also be characterized in terms of an energy function U 
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with a Gibb's distribution: 
e-U(w)/T 

P(w) = Z (2) 

where T is the temperature, and Z is a normalizing constant. 

If we are interested only in the prior distribution P(w), the energy function U is 
defined as: 

U(w) = L Vc(w) (3) 
cEO 

where C is the set of cliques defined by the neighborhood graph, and the Vc are 
the clique potentials. Specifying the clique potentials thus provides a convenient 
way to specify the global joint prior probability distribution P, i.e. to encode prior 
domain knowledge about plausible structures. 

Suppose we are instead interested in the distribution P(wIO) on the field after an 
observation 0, where an observation constitutes a combination of spatially distinct 
observations at each local site. The evidence from an observation at a site is denoted 
P ( 0 .11lw.ll) and is called a likelihood. Assuming likelihoods are local and spatially 
distinct, it is reasonable to assume that they are conditionally independent. Then, 
with Bayes' Rule we can derive: 

(4) 

The MRF definition, together with evidence from the current problem, leaves a 
probability distribution over all possible configurations. An algorithm is then 
used to find a solution, normally the configuration of maximal probability, or 
equivalently, minimal energy as expressed in equation 4. The problem of min­
imizing non-convex energy functions, especially those with many local minima, 
has been the subject of intense scrutiny recently (e.g. [Kirkpatrick et al., 1983; 
Hopfield and Tank, 1985]). In this paper we focus on developing MRF represen­
tations wherein the minimum energy configuration defines a desirable goal, not on 
methods of finding the minimum. In our experiments have have used the determin­
istic Highest Confidence First (HCF) algorithm [Chou and Brown, 1990]. 

MRFs have been widely used in computer vision applications, including image 
restoration, segmentation, and depth reconstruction [Geman and Geman, 1984; 
Marroquin, 1985; Chellapa and Jain, 1991]. All these applications involve Hat rep­
resentations at a single level of abstraction. A novel aspect of our work is the 
hierarchical framework which explicitly represents visual entities at different levels 
of abstraction, so that these higher-order entities can serve as an interpretation of 
the data as well as playa role in further constraint satisfaction at even higher levels. 

3 CONSTRUCTING MRFS EQUIVALENT TO 
PARAMETER NETWORKS 

Here we define a Markov Random Field that computes a Hough transform; i.e. 
it detects higher-order features by tallying weighted votes from low-level image 
components and thresholding the sum. The MRF has one discrete variable for 
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Figure 1: Left: Hough-transform parameter net. Input determines confidence I, in 
each low-level feature; these confidences are weighted (Wi)' summed, and thresh­
olded. Right: Equivalent MRF. Circles show variables with possible labels and 
non-zero unary clique potentials; lines show neighborhoods; potentials are for the 
four labellings of the binary cliques. 

the higher-order feature, whose possible values are ezists and doesn't ezist and one 
discrete variable for each voting element, with the same two possible values. Such 
a field could be replicated in space to compute many features simultaneously. 

The construction follows from two ideas: first, the clique potentials of the network 
are defined such that only two of the many configurations need be considered, the 
other configurations being penalized by high clique potentials (i.e. low a priori 
probability). One configuration encodes the decision that the higher-order feature 
exists, the other that it doesn't exist. The second point is that the energy of the 
"doesn't exist" configuration is independent of the observation, while the energy of 
the "exists" configurations improves with the strength of the evidence. 

Consider a parameter net for the Hough transform that represents only a single 
parameterized image segment (e.g. a line segment) and a set of low-level features, 
(e.g. edges) which vote for it ( Figure 1 left). The variables, labels, and neighbor­
hoods, of the equivalent MRF are defined in the right side of Figure 1 The clique 
potentials, which depend on the Hough parameters, are shown in the right side of 
the figure for a single neighborhood of the graph (There are four ways to label this 
clique.) Unspecified unary potentials are zero. Evidence applies only to the labels 
ei; it is the likelihood of making a local observation 0,: 

(5) 

In lemma 1, we show that the configuration WE = Eele2 ... en , has an en­
ergy equal to the negated weighted sum of the feature inputs, and configuration 
W9 = ,Ee'le'2 ... ,en has a constant energy equal to the negated Hough thresh­
old. Then, in lemma 2, we show that the clique potentials restrict the possible 
configurations to only these two, so that the network must have its minimum en­
ergy in a configuration whose high-level feature has the correct label. 
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Lemma 1: 
U(WE 10) = - E~=l wi/i 
U(W9 I 0) = -0 

Proof: The energy contributed by the clique potentials in WE is E~=l -Wi!mo.1:' 
Defining W = E~=1 Wi, this simplifies to -W!mo.1:' 

The evidence also contributes to the energy of WE, in the form: - E~=1 log ei' 

Substituting from 5 into 4 and simplifying gives the total posterior energy of WE: 

n n 

U(WE 10) = -W!mo.1: + W!mo.1: - LWi!;, = - LWi!i (6) 
1=1 ;'=1 

The energy of the configuration W9 does not depend on evidence derived from the 
Hough features. It has only one clique with a non-zero potential, the unary clique 
of label -,E. Hence U(W9 I 0) = -0.0 

Lemma 2: 
(Vw)(w = E . .. -,elt ... ) :::} U(w I 0) > U(WE I 0) 
(Vw)(w = -,E ... elt ... ) :::} U(w I 0) > U(W9 I 0) 

Proof: For a mixed configuration W = E . .. -,elt ... , changing label -,elt to elt adds 
energy because of the evidence associated with elt. This is at most Wi!mo.1:' It 
also removes energy because of the potential of the clique Eelt, which is -Wi!mo.1:' 
Because the clique potential K2 from E-,e1c is also removed, if K2 > 0, then changing 
this label always reduces the energy. 

For a mixed configuration w = -,E ... elt ... , changing the low-level label e1e to 
-,e1c cannot add to the energy contributed by evidence, since -,elt has no evidence 
associated with it. There is no binary clique potential for -,E-,e, but the potential 
K1 for clique -,Ee1c is removed. Therefore, again, choosing any K1 > 0 reduces 
energy and ensures that compatible labels are preferred.D 

From lemma 2, there are two configurations that could possibly have minimal pos­
terior energy. From lemma I, the configuration which represents the existence of 
the higher-order feature is preferred if and only if the weighted sum of the evidence 
exceeds threshold, as in the Hough transform. 

Often it is desirable to find the mode in a high-level parameter space rather than 
those elements which surpass a fixed threshold. Finding a single mode is easy to 
do in a Hough-like MRFj add lateral connections between the ezists labels of the 
high-level features to form a winner-take-all network. If the potentials for these 
cliques are large enough, it is not possible for more than one variable corresponding 
to a high-level feature to be labeled ezists. 

4 BEYOND HOUGH TRANSFORMS: MRF 
PARAMETER NETS 

The essentials of a parameter network are a set of variables representing low-order 
features, a set of variables representing high-order features, and the appropriate 



Markov Random Fields Can Bridge Levels of Abstraction 401 

Figure 2: Noisy image data 

Figure 3: Three parameter-net MRF experiments: white dots in the lower images 
indicate the decision that a horizontal or vertical local edge is present. Upper images 
show the horizontal and vertical lines found. The left net is a feedforward Hough 
transform; the middle net uses positive feedback from lines to edges; the right net 
uses negative feedback, from non-existing lines to non-existing edges 

weighted connections between them. This section explores the characteristics of 
more "natural" MRF parameter networks, still based on the same variables and 
connections, but not limited to binary label sets and sum/threshold decision pro­
cedures. 

4.1 EXPERIMENTS WITH FEEDBACK 

The Hough transform and its parameter net instantiation are inherently feed­
forward . In contrast, all MRFs intrinsically incorporate feedback. We experimented 
with a network designed to find lines from edges. Horizontal and vertical edge inputs 
are represented at the low level, and horizontal and vertical lines which span the 
image at the high level. The input data look like Figure 2. Probabilistic evidence 
for the low-level edges is generated from pixel data using a model of edge-image for­
mation [Sher, 1987]. The edges vote for compatible lines. In Figure 3, the decision 
of the feed-forward, Hough transform MRF is shown at the left: edges exist where 
the local evidence is sufficient; lines exist where enough votes are received. 

Keeping the same topology, inputs, and representations in the MRF, we added top­
down feedback by changing binary clique potentials so that the existence of a line at 
the high level is more strongly compatible with the existence of its edges. Missing 
edges are filled in (middle). By making non-existent lines strongly incompatible with 
the existence of edges, noisy edges are substantially removed (right). Other MRFs 
for segmentation [Chou and Brown, 1990; Marroquin, 1985] find collinear edges, 
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but cannot reason about lines and therefore cannot exploit top-down feedback. 

4.2 REPRESENTATION AND DECISION MAKING 

Both parameter nets and MRFs represent confidence in local hypotheses, but here 
the MRF framework has intrinsic advantages. MRFs can simultaneously represent 
independent beliefs for and against the same hypotheses. In an active vision sys­
tem, which must reason about gathering as well as interpreting evidence, one could 
extend this to include the label don't know, allowing explicit reasoning about the 
condition in which the local evidence insufficiently supports any decision. MRFs can 
also express higher-order constraints as more than a set of pairs. The exploitation 
of appropriate 3-cliques, for example, has been shown to be very useful [Cooper, 
1990]. 

Since the potentials in an MRF are related to local conditional probabilities, there 
is a principled way to obtain them. Observations can be used to estimate local joint 
probabilities, which can be converted to the clique potentials defining the prior 
distribution on the field [Pearl, 1988; Swain, 1990]. 

Most evidence integration schemes require, in addition to the network topology and 
parameters, the definition of a decision making process (e.g. thresholding) and a 
theory of parameter acquisition for that process, which is often ad hoc. To estimate 
the maximum posterior probability of a MRF, on the other hand, is intrinsically 
to make a decision among the possibilities embedded in the chosen variables and 
labels. 

The space of possible decisions (interpretations of problem input) is also much 
richer for MRFs than for parameter networks. For both nets, the nodes for which 
evidence is available define a n-dimensional problem input space. The weights 
di vide this space into regions defined by the one best interpretation (configuration) 
for all problems in that region. With parameter nets, these regions are separated 
by planes, since only the sum of the inputs matters. In MRFs, the energy depends 
on the log-product of the evidence and the sum of the potentials, allowing more 
general decision surfaces. Non-linear decisions such as AND or XOR are easy to 
encode, whereas they are impossible for the linear Hough transform. 

5 CONCLUSION 

This paper has shown that parameter networks can be constructed with Markov 
Random Fields. MRFs can thus bridge representational levels of abstraction in 
network vision systems. Furthermore, it has been demonstrated that MRFs offer 
the potential for a significantly more powerful implementation of parameter nets, 
even if their topological architecture is identical to traditional Hough networks. In 
short, at least one method is now available for constructing intermediate vision 
solutions with Markov Random Fields. 

It may thus be possible to build entire integrated vision systems with a single well­
justified formal framework - Markov Random Fields. Such systems would have a 
unified representational scheme, constraints and evidence with well-defined seman­
tics, and a single control structure. Furthermore, feedback and feedforward flow of 
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information, crucial in any complete vision system, is intrinsic to MRFs. 

Of course, the task still remains to build a functioning vision system for some 
domain. In this paper we have said nothing about the definition of specific "fea­
tures" and the constraints between them that would constitute a useful system. 
But providing essential tools implemented in a well-defined formal framework is an 
important step toward building robust, functioning systems. 
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