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Abstract 

Automated monitoring of vigilance in attention intensive tasks such as 
air traffic control or sonar operation is highly desirable. As the opera­
tor monitors the instrument, the instrument would monitor the operator, 
insuring against lapses. We have taken a first step toward this goal by us­
ing feedforward neural networks trained with backpropagation to interpret 
event related potentials (ERPs) and electroencephalogram (EEG) associ­
ated with periods of high and low vigilance . The accuracy of our system on 
an ERP data set averaged over 28 minutes was 96%, better than the 83% 
accuracy obtained using linear discriminant analysis. Practical vigilance 
monitoring will require prediction over shorter time periods. We were able 
to average the ERP over as little as 2 minutes and still get 90% correct 
prediction of a vigilance measure. Additionally, we achieved similarly good 
performance using segments of EEG power spectrum as short as 56 sec. 

1 INTRODUCTION 

Many tasks in society demand sustained attention to minimally varying stimuli 
over a long period of time. Detection of failure in vigilance during such tasks would 
be of enormous value. Different physiological variables like electroencephalogram 
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(EEG), electro-oculogram (EOG), heart rate, and pulse correlate to some extent 
with the level of attention (1, 2, 3). Profound changes in the appearance and 
spectrum of the EEG with sleep and drowsiness are well known. However, there is 
no agreement as to which EEG bands can best predict changes in vigilance. Recent 
studies (4) seem to indicate that there is a strong correlation between several EEG 
power spectra frequencies changes and attentional level in subjects performing a 
sustained task. Another measure that has been widely assessed in this context 
involves the use of event-related potentials (ERP)(5). These are voltage changes 
in the ongoing EEG that are time locked to sensory, motor, or cognitive events. 
They are usually too small to be recognized in the background electrical activity. 
The ERP's signal is typically extracted from the background noise of the EEG as 
a consequence of averaging over many trials. The ERP waveform remains constant 
for each repetition of the event, whereas the background EEG activity has random 
amplitude. Late cognitive event-related potentials, like the P300, are well known to 
be related to attentional allocation (6, 7,8). Unfortunately, these ERPs are evoked 
only when the subject is attending to a stimulus. This condition is not present 
in a monitoring situation where monitoring is done precisely because the time of 
stimulus occurrence is unknown. Instead, shorter latency responses, evoked from 
unobtrusive task-irrelevant signals, need to be evaluated. 

Data from a sonar simulation task was obtained from S.Makeig at al (9). They 
presented auditory targets only slightly louder than background noise to 13 male 
United States Navy personnel. Other tones, which the subjects were instructed 
to ignore, appeared randomly every 2-4 seconds (task irrelevant probes). Back­
ground EEG and ERP were both collected and analyzed. The ERPs evoked by 
the task irrelevant probes were classified into two groups depending on whether 
they appeared before a correctly identified target (pre-hit ERPs) or a missed target 
(pre-lapse ERPs). Pre-lapse ERPs showed a relative increase of P2 and N2 compo­
nents and a decrease of the N 1 deflection. N 1, N2 and P2 designate the sign and 
time of peak of components in the ERP. Prior linear discriminant analysis (LDA) 
performed on the averages of each session, showed 83% correct classification using 
ERPs obtained from a single scalp site. Thus, the pre-hit and pre-lapse ERPs dif­
fered enough to permit classification by averaging over a large enough sample. In 
addition, EEG power spectra over 81 frequency bands were computed. EEG clas­
sification was made on the basis of a continuous measure of performance, the error 
rate, calculated as the mean of hits and lapses in a 32 sec moving window. Analy­
sis of the EEG power spectrum (9) revealed that significant coherence is observed 
between various EEG frequencies and performance. 

2 METHOD 

2.1 THE DATA SET 

Two different groups of input data were used (ERPs and EEG). For the former, a 600 
msec sample of task irrelevant probe ERP was reduced to 40 points after low-pass 
filtering. We normalized the data on the basis of the maximum and minimum values 
of the entire set, maintaining amplitude variability. A single ERP was classified as 
being pre-hit or pre-lapse based on the subject's performance on the next target 
tone. EEG power spectrum, obtained every 1.6 seconds, was used as an input to 
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predict a continuous estimate of vigilance (error rate), obtained by averaging the 
subject's performance during a 32 second window (normalized between -1 and 1). 
The five frequencies used (3, 10, 13, 19 and 39 Hz) had previously shown to be 
most strongly related to error rate changes (9). Each frequency was individually 
normalized to range between -1 and 1. 

2.2 THE NETWORK 

Feedforward networks were trained with backpropagation. We compared two-layer 
network to three-layer networks, varying the number of hidden units in different 
simulations between 2 and 8. Each architecture was trained ten times on the same 
task, resetting the weights every time with a different random seed. Initial simula­
tions were performed to select network parameter values. We used a learning rate of 
0.3 divided by the fan-in and weight initialization in a range between ±0.3. For the 
ERP data we used a jackknife procedure. For each simulation, a single pattern was 
excluded from the training set and considered to be the test pattern. Each pattern 
in turn was removed and used as the test pattern while the others are used for 
training. The EEG data set was not as limited as the ERP one and the simulations 
were performed using half of the data as training and the remaining part as testing 
set . Therefore, for subjects that had two runs each, the training and testing data 
came from separate sessions. 

3 RESULTS 

3.1 ERPs 

The first simulation was done using a two-layer network to assess the adequacy 
of the neural network approach relative to the previous LDA results . The data 
set consisted of the grand averages of pre-hits and pre-lapses, from a single scalp 
site (Cz) of 9 subjects, three of them with a double session , giving a total of 24 
patterns. The jackknife procedure was done in two different ways. First each ERP 
was considered individually, as had been done in the LDA study (pattern-jackknife) . 
Second all the ERPs of a single subject were grouped together and removed together 
to form the test set (subject-jackknife). The network was trained for 10,000 epochs 
before testing. Figure 1 shows the weights for the 24 networks each trained with 
a set of ERPs obtained by removing a single ERP. The "waveform" of the weight 
values corresponds to features common to the pre-hit ERPs and to the negative of 
features common to the pre-lapse ERPs . Classification of patterns by the network 
was considerably more accurate than the 83% correct that had been obtained with 
the previous LDA analysis. 96% correct evaluation was seen in seven of the ten 
networks started with different random weight selections . The remaining three 
networks produced 92% correct responses (Fig. 2). The same two patterns were 
missed in all cases. Using hidden units did not improve generalization. The subject­
jackknife results were very similar: 96% correct in two of ten networks and 92% in 
the remaining eight (Fig. 2). Thus, there was a somewhat increased difficulty 
in generalizing across individuals. The ability of the network to generalize over a 
shorter period of time was tested by progressively decreasing the number of trials 
used for testing using a network trained on the grand average ERPs . Subaverages 
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Figure 1: Weights from 24 two-layer networks trained from different initial weights: 
each value correspond to a sample point in time in the input data. 
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Figure 2: Generalization performance in Pattern (left) and Subject (right) Jack­
knifes, using two-layer and three-layer networks with different number of hidden 
units. Each bar represents a different random start of the network. 
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were formed using from 1 to 160 individual ERPs (Figure 3) . Performance with a 
single ERP is at chance. With 16 ERPs , corresponding to about 2 minutes, 90% 
accuracy was obtained. 

3.2 EEG 

We first report results using a two-layer network to compare with the previous LDA 
analysis. Five power spectrum frequency bands from a single scalp site (Cz) were 
used as input data. The error rate was averaged over 32 seconds at 1.6 second 
intervals. In the first set of runs both error rate and power spectra were filtered 
using a two minute time window. Good results could be obtained in cases where a 
subject made errors more than 40% of the time (Fig. 4). When the subject made 
few errors, training was more difficult and generalization was poor. These results 
were virtually identical to the LDA ones. The lack of improvement is probably due 
to the fact that the LDA performance was already close to 90% on this data set. 
Use of three-layer networks did not improve the generalization performance. 

The use of a running average includes information in the EEG after the time at 
which the network is making a prediction. Causal prediction was attempted using 
multiple power spectra taken at 1.6 sec intervals over the past 56 sec, to predict 
the upcoming error rate. The results for one subject are shown in Figure 5. The 
predicted error rate differs from the target with a root mean square error of 0.3. 
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Figure 4: Generalization results predicting error rate from EEG. The dotted line is 
the network output, solid line the desired value. 
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Figure 5: Causal prediction of error rate from EEG. The dotted line is the network 
output, solid line the desired value. 
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Figure 6: Weights from a two-layer causal prediction network. Each bar, within 
each frequency band, represents the influence on the output unit of power in that 
band at previous times ranging from 1 sec (right bar) to 56 sec (left bar). 

Figure 6 shows the weights from a two-layer network trained to predict instanta­
neous error rate. The network mostly uses information from the 3.05 Hz and 13.4 
Hz frequency bands in predicting the error rate changes. The values of the 3.05 
Hz weights have a strong peak from the most recent time steps, indicating that 
power in this frequency band predicts the state of vigilance on a short time scale. 
The alternating positive and negative weights present in the 13.4 Hz set suggest 
that rapid changes in power in this band might be predictive of vigilance (i.e. the 
derivative of the power signal). 

4 DISCUSSION 

These results indicate that neural networks could be useful in analyzing electro­
physiological measures. The EEG results suggest that the analysis can be applied 
to detect fluctuations of the attentional level of the subjects in real time. EEG 
analysis could also be a useful tool for understanding changes that occur in the 
electric activity of the brain during different states of attention. 

In the ERP analysis, the lack of improvement with the introduction of hidden units 
might be due to the small size of the data set. If the data set is too small, adding 
hidden units and connections may reduce the ability to find a general solution to 
the problem. The ERP subject-jackknife results point out that inter-subject gener­
alization is possible. This suggests the possibility of preparing a pre-programmed 
network that could be used with multiple subjects rather than training the network 
for each individual. The subaverages results suggest that the detection is possible 
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in a relatively brief time interval. ERPs could be an useful completion to the EEG 
analysis in order to obtain an on line detector of attentional changes. 

Future research will combination of these two measures along with EOG and heart 
rate. The idea is to let the model choose different network architectures and pa­
rameters, depending on the specific subtask. 
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