
Learning to Segment Images 
Using Dynamic Feature Binding 

Michael C. Moser 
Dept. of Compo Science & 
Inst. of Cognitive Science 

University of Colorado 
Boulder, CO 80309-0430 

Richard S. Zemel 
Dept. of Compo Science 
University of Toronto 

Toronto, Ontario 
Canada M5S lA4 

Marlene Behrmann 
Dept. of Psychology & 

Faculty of Medicine 
University of Toronto 

Toronto, Ontario 
Canada M5S lAl 

Abstract 

Despite the fact that complex visual scenes contain multiple, overlapping 
objects, people perform object recognition with ease and accuracy. One 
operation that facilitates recognition is an early segmentation process in 
which features of objects are grouped and labeled according to which ob­
ject they belong. Current computational systems that perform this oper­
ation are based on predefined grouping heuristics. We describe a system 
called MAGIC that learn. how to group features based on a set of pre­
segmented examples. In many cases, MAGIC discovers grouping heuristics 
similar to those previously proposed, but it also has the capability of find­
ing nonintuitive structural regularities in images. Grouping is performed 
by a relaxation network that aUempts to dynamically bind related fea­
tures. Features transmit a complex-valued signal (amplitude and phase) 
to one another; binding can thus be represented by phase locking related 
features. MAGIC'S training procedure is a generalization of recurrent back 
propagation to complex-valued units. 

When a visual image contains multiple, overlapping objects, recognition is difficult 
because features in the image are not grouped according to which object they belong. 
Without the capability to form such groupings, it would be necessary to undergo a 
massive search through all subsets of image features. For this reason, most machine 
vision recognition systems include a component that performs feature grouping or 
image .egmentation (e.g., Guzman, 1968; Lowe, 1985; Marr, 1982). 
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A multitude of heuristics have been proposed for segmenting images. Gestalt psy­
chologists have explored how people group elements of a display and have suggested 
a range of grouping principles that govern human perception (Rock &z: Palmer, 1990). 
Computer vision researchers have studied the problem from a more computation­
al perspective. They have investigated methods of grouping elements of an image 
based on nonaccidental regularitie..-feature combinations that are unlikely to occur 
by chance when several objects are juxtaposed, and are thus indicative of a single 
object (Kanade, 1981; Lowe &z: Binford, 1982). 

In these earlier approaches, the researchers have hypothesized a set of grouping 
heuristics and then tested their psychological validity or computational utility. In 
our work, we have taken an adaptive approach to the problem of image segmenta­
tion in which a system learns how to group features based on a set of examples. 
We call the system MAGIC, an acronym for multiple-object !daptive grouping of 
image ~omponents. In many cases MAGIC discovers grouping heuristics similar to 
those proposed in earlier work, but it also has the capability offinding nonintuitive 
structural regularities in images. 

MAGIC is trained on a set of presegmented images containing multiple objects. By 
"presegmented," we mean that each image feature is labeled as to which object it 
belongs. MAGIC learns to detect configurations of the image features that have a 
consistent labeling in relation to one another across the training examples. Identify­
ing these configurations allows MAGIC to then label features in novel, unsegmented 
images in a manner consistent with the training examples. 

1 REPRESENTING FEATURE LABELINGS 

Before describing MAGIC, we must first discuss a representation that allows for 
the labeling of features. Von der Malsburg (1981), von der Malsburg &z: Schneider 
(1986), Gray et al. (1989), and Eckhorn et al. (1988), among others, have suggested 
a biologically plausible mechanism of labeling through temporal correlations among 
neural signals, either the relative timing of neuronal spikes or the synchronization of 
oscillatory activities in the nervous system. The key idea here is that each processing 
unit conveys not just an activation value-average firing frequency in neural terms­
but also a second, independent value which represents the relative phcue of firing. 
The dynamic grouping or binding of a set of features is accomplished by aligning 
the phases of the features. Recent work (Goebel, 1991; Hummel &z: Biederman, in 
press) has used this notion of dynamic binding for grouping image features, but has 
been based on relatively simple, predetermined grouping heuristics. 

2 THE DOMAIN 

Our initial work has been conducted in the domain of two-dimensional geometric 
contours, including rectangles, diamonds, crosses, triangles, hexagons, and octa­
gons. The contours are constructed from four primitive feature types-oriented 
line segments at 0°, 45°, 90°, and 135°-and are laid out on a 15 X 20 grid. At 
each location on the grid are units, called feature unib, that detect each of the four 
primitive feature types. In our present experiments, images contain two contours. 
Contours are not permitted to overlap in their activation of the same feature unit. 
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Figure 1: The architedure of MAGIC. The lower layer contains the feature units; the 
upper layer contains the hidden units. Each layer is arranged in a spatiotopic array 
with a number of different feature types at each position in the array. Each plane in 
the feature layer corresponds to a different feature type. The grayed hidden units 
are reciprocally conneded to all features in the corresponding grayed region of the 
feature layer. The lines between layers represent projections in both directions. 

3 THE ARCHITECTURE 

The input to MAGIC is a paUern of activity over the feature units indicating which 
features are present in an image. The initial phases ofthe units are random. MAGIC'S 

task is to assign appropriate phase values to the units. Thus, the network performs 
a type of paUern completion. 

The network architedure consists of two layers of units, as shown in Figure 1. The 
lower (input) layer contains the feature units, arranged in spatiotopic arrays with 
one array per feature type. The upper layer contains hidden units that help to align 
the phases of the feature units; their response properties are determined by training. 
Each hidden unit is reciprocally conneded to the units in a local spatial region of 
all feature arrays. We refer to this region as a patch; in our current simulations, the 
patch has dimensions 4 x 4. For each patch there is a corresponding fixed-size pool 
of hidden units. To achieve uniformity of response across the image, the pools are 
arranged in a spatiotopic array in which neighboring pools respond to neighboring 
patches and the weights of all pools are consbained to be the same. 

The feature units activate the hidden units, which in turn feed back to the feature 
units. Through a relaxation process, the system settles on an assignment of phases 
to the features. 
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4 NETWORK DYNAMICS 

Formally, the response of each feature unit i, ~i, is a complex value in polar form, 
(<<li, pil, where «li is the amplitude or activation and Pi is the phase. Similarly, the 
response of each hidden unit ;, 11;, has components (b;, q;). The weight connecting 
unit i to unit ;, wiiJ is also complex valued, having components (Pii,8ii ). The 
activation rule we propose is a generalization of the dot product to the complex 
domain: 

neti x·wi 

Ei~iWii 

([(Ei«lip;i cos(Pi - 8;i»2 + (Ei«liPii sin(pi - 8ii»2] ! , 

t -1 [Ei«lip;iSin(Pi - 8ii )]) 
an Ei«liP;i COS(pi - 8;i) 

where net; is the net input to hidden unit;. The net input is passed through 
a squashing nonlinearity that maps the amplitude of the response from the range 
o -+ 00 to 0 -+ 1 but leaves the phase unaffected: 

1Ii neti (1 _ e-Inetjl:l) . 
Inet;1 

The :Bow of activation from the hidden layer to the feature layer follows the same 
dynamics, although in the current implementation the amplitudes of the features 
are clamped, hence the top-down How affects only the phases. One could imagine a 
more general architecture in which the relaxation process determined not only the 
phase values, but cleaned up noise in the feature amplitudes as well. 

The intuition underlying the activation rule is as follows. The activity of a hidden 
unit, b;, should be monotonically related to how well the feature response pattern 
matches the hidden unit weight vector, just as in the standard real-valued activation 
rule. Indeed, one can readily see that if the feature and weight phases are equal 
(Pi = 8;i), the rule for bi reduces to the real-valued case. Even if the feature 
and weight phases differ by a constant (Pi = 8i i + e), b; is unaffected. This is 
a critical property of the activation rule: Because ab.olute phase values have no 
inhinsic meaning, the response of a unit should depend only on the relative phases. 
The activation rule achieves this by essentially ignoring the average difference in 
phase between the feature units and the weights. The hidden phase, q;, reHects this 
average difference. 

5 LEARNING ALGORITHM 

During training, we would like the hidden units to learn to detect configurations 
of features that reliably indicate phase relationships among the features. We have 
experimented with a variety of training algorithms. The one with which we have 
had greatest success involves running the network for a fixed number of iterations 
and, after each iteration, attempting to adjust the weights so that the feature phase 
pattern will match a target phase pattern. Each training hial proceeds as follows: 
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1. A training example is generated at random. This involves selecting two con­
tours and instantiating them in an image. The features of one contour have 
target phase 0° and the features of the other contour have target phase 180°. 

2. The training example is presented to MAGIC by clamping the amplitude of a 
feature unit to 1.0 ifits corresponding image feature is present, or 0.0 otherwise. 
The phases ofthe feature units are set to random values in the range 0° to 360°. 

3. Activity is allowed to :flow from the feature units to the hidden units and back 
to the feature units. Because the feature amplitudes are clamped, they are 
unaffected. 

4. The new phase pattern over the feature units is compared to the target phase 
pattern (see step I), and an error measure is computed: 

E = -(Et(l( cos(Pi - Pi))2 - (Eta. sin(Pi - Pi))2, 

where p is the target phase pattern. This error ignores the absolute difference 
between the target and actual phases. That is, E is minimized when Pi - Pi is 
a constant for all i, regardless of the value of Pi - Pi. 

5. Using a generalization of back propagation to complex valued units, error gra­
dients are computed for the feature-to-hidden and hidden-to-feature weights. 

6. Steps 3-5 are repeated for a maximum of 30 iterations. The trial is terminated 
if the error increases on five consecutive iterations. 

7. Weights are updated by an amount proportional to the average error gradient 
over iterations. 

Learning is more robust when the feature-to-hidden weights are constrained to be 
symmetric with the hidden-to-feature weights. For complex weights, symmetry 
means that the weight from feature unit i to hidden unit j is the complex conju­
gate of the weight from hidden unit j to feature unit i. Weight symmetry ensures 
that MAGIC will converge to a fixed point. (The proof is based on discrete-time 
update and a two-layer architecture with sequential layer updates and no intralayer 
connections. ) 

Simulations reported below use a learning rate of .005 for the amplitudes and 0.02 
for the phases. About 10,000 learning trials are required for stable performance, 
although MAGIC rapidly picks up on the most salient aspects of the domain. 

6 SIMULATION RESULTS 

We trained a network with 20 hidden units per pool on images containing either 
two rectangles, two diamonds, or a rectangle and a diamond. The shapes were of 
varying size and appeared in various locations. A subset of the resulting weights are 
shown in Figure 2. Each hidden unit attempts to detect and reinstantiate activity 
patterns that match its weights. One clear and prevalent pattern in the weights is 
the collinear arrangement of segments of a given orientation, all having the same 
phase value. When a hidden unit having weights of this form responds to a patch of 
the feature array, it tries align the phases of the patch with the phases of its weight 
vector. By synchronizing the phases of features, it acts to group the features. Thus, 
one can interpret the weight vectors as the rules by which features are grouped. 
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Figure 2: Sample of feature-to-hidden weights learned by MAGIC. The area of a 
circle represents the amplitude of a weight, the orientation of the internal tick mark 
represents the phase angle. The weights are arranged such that the connections 
into each hidden unit are presented on a light gray background. Each hidden unit 
has a total of 64 incoming weights--t x 4 locations in its receptive field and four 
feature types at each location. The weights are further grouped by feature type, 
and for each feature type they are arranged in a 4 X 4 pattern homologous to the 
image patch itself. 

Whereas traditional grouping principles indicate the conditions under which features 
should be bound together as part of the same object, the grouping principles learned 
by MAGIC also indicate when features should be segregated into different objects. 
For example, the weights of the vertical and horizontal segments are generally 1800 

out of phase with the diagonal segments. This allows MAGIC to segregate the vertical 
and horizontal features of a rectangle from the diagonal features of a diamond. We 
had anticipated that the weights to each hidden unit would contain two phase 
values at most because each image patch contains at most two objects. However, 
some units make use of three or more phases, suggesting that the hidden unit is 
performing several distinct functions. As is the usual case with hidden unit weights, 
these patterns are difficult to interpret. 

Figure 3 presents an example of the network segmenting an image. The image 
contains two diamonds. The top left panel shows the features of the diamonds and 
their initial random phases. The succeeding panels show the network's response 
during the relaxation process. The lower right panel shows the network response at 
equilibrium. Features of each object have been assigned a uniform phase, and the 
two objects are 1800 out of phase. The task here may appear simple, but it is quite 
challenging due to the illusory diamond generated by the overlapping diamonds. 
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Figure 3: An example of MAGIC segmenting an image. The "iteration" refers to 
the number of times activity has flowed from the feature units to the hidden units 
and back. The phase value of a feature is represented by a gray level. The periodic 
phase continuum can only be approximated by the linear gray level continuum, but 
the basic information is conveyed nonetheless. 

7 CURRENT DIRECTIONS 

We are currently extending MAGIC in several diredions, which we outline here. 

• A natural principle for the hierarchical decomposition of objects emerges from 
the relative frequency of feature configurations during training. More frequent 
configurations result in a robust hidden representation, and hence the features 
forming these configurations will be tightly coupled. A coarse quantization of 
phases will lead to parses of the image in which only the highest frequency 
configurations are considered as "objeds." Finer quantizations will lead to a 
further decomposition of the image. Thus, the continuous phase representation 
allows for the construdion of hierarchical descriptions of objeds. 

• Spatially local grouping principles are unlikely to be sufficient for the image 
segmentation task. Indeed, we have encountered incorred solutions produced 
by MAGIC that are locally consistent but globally inconsistent. To solve this 
problem, we are investigating an architecture in which the image is processed 
at several spatial scales simultaneously. 

• Simulations are also underway to examine MAGIC'S performance on real-world 
images-overlapping handwriUen leUers and digits-where it is somewhat less 
clear to which types of paUerns the hidden units should respond. 

• Zemel, Williams, and Mozer (to appear) have proposed a mathematical frame­
work that-with slight modifications to the model-allow it to be interpreted 
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as a mean-field approximation to a stochastic phase model . 

• Behrmann, Zemel, and Mozer (to appear) are conducting psychological exper­
iments to examine whether limitations of the model match human limitations. 
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