
The Tempo 2 Algorithm: Adjusting Time-Delays By
Supervised Learning

Ulrich Bodenhausen and Alex Waibel
School of Computer Science
Carnegie Mellon University

Pittsbwgh, PA 15213

Abstract

In this work we describe a new method that adjusts time-delays and the widths of
time-windows in artificial neural networks automatically. The input of the units
are weighted by a gaussian input-window over time which allows the learning
rules for the delays and widths to be derived in the same way as it is used for the
weights. Our results on a phoneme classification task compare well with results
obtained with the TDNN by Waibel et al., which was manually optimized for the
same task.

1 INTRODUCTION

The processing of pattern-sequences has been investigated with several neural network
architectures. One approach to processing of temporal context with neural networks is
to implement time-delays. This approach is neurophysiologically plausible, because real
axons have a limited conduction speed (which is dependent on the diameter of the axon and
whether it is myelinated or not). Additionally, the length of most axons is much greater
than the euclidean distance between the connected neurons. This leads to a great variety
of different time-delays in the brain. Artificial networks that make use of time-delays have
been suggested [10, 11, 12,8,2,3].

In the TDNN [11, 12] and most other artificial neural networks with time-delays the delays
are implemented as hat-shaped input-windows over time. A unit j that is connected with
unit i by a connection with delay n is only receiving information about the activity of unit i
n time-steps ago. A set of connections with consecutive time-delays is used to let each unit
gather a certain amount of temporal context. In these networks, weights are automatically
trained but the architecture of the network (time-delays, number of connections and number
of units) have to be predetermined by laborious experiments [8, 6].

155

156 Bodenhausen and Waibel

In this work we describe a new algorithm that adjusts time-delays and the width of the
input-window automatically. The learning rules require input-windows over time that can
be described by a smooth function. With these input-windows it is possible to derive
learning rules for adjusting the center and the width of the window. During training, new
connections are added if they are needed by splitting already existing connections and
training them independently.

Adaptive time-delays in neural networks could have Significant advantages for the pro
cessing of pattern-sequences, especially if the relevant information is distributed across
non-consecutive patterns. A typical example for this kind of pattern sequences are rhythms
(relevant in music and speech). In a rhythm, there are many events but also many gaps
between these events. Another example is speech, where some parts of an utterance are
more important for understanding than others (example: 'hat', 'fat', 'cat' ..). Therefore a
network that allocates existing and new resources to the parts of the input sequence that are
most helpful for the task could be more compact and efficient for various tasks.

2 THE TEMPO 2 NETWORK

The Tempo 2 network is an artificial neural network with adaptive weights, adaptive time
delays and adaptive widths of gaussian input windows over time. It is a generalization
of the Back-Propagation network proposed by Rumelhart, Hinton and Williams [9]. The
network is based on some ideas that were tested with the Tempo 1 network [2, 3].

The Tempo 2 network is designed to learn about the relevant temporal context during
training. A unit in the network is activated by input from a gaussian shaped input-window
centered around (t-d) and standard deviation 0', where d (the time-delay) and 0' (the width of
the input-window) are to be learned 1 (see Fig. 1 and 2). This means that the center and the
width of each input-window can be adjusted by learning rules. The adaptive time-delays
allow the processing of temporal context that is distributed across several non-consecutive
patterns of the sequence. The adaptive width of the window enables the receiving unit to
monitor a variable sequence of consecutive activations over time of each sending unit. New
connections can be added if they are needed (see section 2.1). The input of unitj at time t,
x(t)jt is

t

x(t)j = L LYk(r)O(r, t,djkl O'jk)Wjk
r=O k

with O(r, t,djk, O'jk) representing the gaussian input window given by

O(r t do 0' 0) _ 1 e(r-t+djl)2 /2~
1 , :Jk , Jk - '2-

y L.7rUjk

where Yk is the output of the previous sending unit and Wjk, djk and O'jk are the weights,
delays and widths on its connections, respectively.

This approach is partly motivated by neurophysiology and mathematics. In the brain, a
spike that is sent by a neuron via an axon is not received as a spike by the receiving cell.

1 Other windows are possible. The function describing the shape of the window has to be smooth.

The Tempo 2 Algorithm: Adjusting Time-Delays By Supervised Learning 157

input 3

•
•
•

input D

time

Figure I: The input to one unit in the Tempo 2 network. The boxes represent the activations
of the sending units; a tall box represents a high activity.

Rather, the postsynaptic potential has a short rise and a long tail. Let us assume a situation
with two neurons. Neuron A fires at time t-d, where d is the time that the signal needs to
travel along the connection and to activate neuron B. Neuron B is activated mostly at time
t, but the postsynaptic potential will decrease slowly and neuron B will get some input at
time t+I, some smaller input at time t+2 and so on. Functionally, a spike is smeared over
time and this provides some "local memory".

For our simulations we simulate this behavior by allowing the receiving unit to be activated
by the weighted sum of activations around an input centered at time t-d. If the sending
unit ("neuron A") was activated at time t-d, then the receiving unit ("neuron Bit) will be
activated mostly at time t, will be less activated at time t+I, and so on. In our case, the
input-window function also allows the receiving unit to be (less) activated at times t-I, t-2
etc .. This enables us to formulate a learning rule that can increase and decrease time-delays.

The gaussian input-window has the advantage that it provides some robustness against tem
porally misaligned input tokens. By looking at Fig. 2 it is obvious that small misalignments
of the input signal do not change the input of the receiving unit significantly. The robustness
is dependent on the width of the window. Therefore a wide window would make the input
of the receiving unit more robust against signals shifted in time, but would also reduce the
time-resOlution of the unit. This suggests the implementation of a learning rule that adjusts
the width of the input-windows of each connection.

With this gaussian input-window, it is possible to compute how the input of unit j would
change if the delay of a connection or the width of the input window were changed. The
formalism is the same as for the derivation of the learning rules for the weights in a standard
Back-Propagation network. The change of a delay is proportional to the derivative of the
output error with respect to the delay. The change of a width is proportional to the derivative
of the error with respect to the width. The error at the output is propagated back to the
hidden layer. The learning rules for weights Wji, delays dji and widths (1'ji were derived from

158 Bodenhausen and Waibel

Adjusting the delays:

derivative positive

-> Increase delay
-> move window left /:
~1

II

Adjusting the width of the windows

delay

derivative with
respect to (J ' "

.............. . 11 .. ••• ••••• '. iii. .iI --.,'Iif..-:: -· .. -=.II.-.......... ..

:". :.

A 1"8:1 A

Figure 2: A graphical explanation of the learning rules for delays and widths: The derivative
of the gaussian input-window with respect to time is used for adjusting the time-delays.
The derivative with respect to u (dotted line) is used for adjusting the width of the window.
A majority of activation in area A will cause the window to grow. A majority of activity in
area B will cause the window to shrink.

where fl, f2 and f3 are the learning rates and E is the error. As in the derivation of the
standard Back-Propagation learning rules, the chain rule is applied (z = w, d, u):

oE oE ox(t)j

OZji = ox(t)j OZji

where 8~f,)j is the same in the learning rules for weights, delays and widths. The partial
derivatives of the input with respect to the parameters of the connections are computed as
follows:

The Tempo 2 Algorithm: Adjusting Time-Delays By Supervised Learning 159

Splitting the Connections:
A. delay-

: .•..........
. ...

".

Figure 3: Splitting of a connection. The dotted line represents the "old" window and the
solid lines represent the two windows after splitting, respectively.

2.1 ADDING NEW CONNECTIONS

Learning algorithms for neural networks that add hidden units have recently been proposed
[4,5]. In our network connections are added to the already existing ones in a similar way
as it is used by Hanson for adding units [5]. During learning, the network starts with one
connection between two units. Depending on the task this may be insufficient and it would be
desirable to add new connections where more connections are needed. New connections are
added by splitting already existing connections and afterwards training them independently
(see Fig. 3). The rule for splitting a connection is motivated by observations during training
runs. It was observed that input-windows started moving backwards and forwards (that
means the time-delays changed) after a certain level of performance was reached. This can
be interpreted as inconsistent time-delays which might be caused by temporal variability
of certain features in the samples of speech. During training we compute the standard
deviations of all delay changes and compare them with a threshold:

~ lL1d .. 1 if L (L1dji(token) - walltouns 'J')2 > threshold
II L_ #tokens

a tOl<.ens

then split connection ji.

3 SIMULATIONS

The Tempo 2 network was initially tested with rhythm classification. The results were
encouraging and evaluation was carried out on a phoneme classification task. In this
application, adaptive delays can help to find important cues in a sample of speech. Units
should not accumulate information from irrelevant parts of the phonemes. Rather, they
should look at parts within the phonemes that provide the most important information for
the kind of feature extraction that is needed for the classification task. The network was
trained on the phonemes /bl, Id/ and Ig/ from a single speaker. 783 tokens were used for
training and 759 tokens were used for testing.

160 Bodenhausen and Waibel

II adaptive parameters I constant parameters I Training Set I Testing Set II
weights delays, widths 93.2% 89.3%
delays weights, widths 64.0% 63.0%
widths weights, delays 63.5% 61.8%

delays, widths weights 70.0% 68.6%
weights, delays widths 98.3% 97.8%

weights, delays, widths - 98.8% 98.0%

Table 1: /b/. Id/ and Ig/ Classification performance with 8 hidden units in one hidden layer.
The network is initialized with random weights and constant widths.

In order to evaluate the usefulness of each adaptive parameter. the network was trained and
tested with a variety of combinations of constant and adaptive parameters (see Table 1). In
all cases the network was initialized with random weights and delays and constant widths
u of the input windows. All results were obtained with 8 hidden units in one hidden layer.

4 DISCUSSION

The TDNN has been shown to be a very powerful approach to phoneme recognition. The
fixed time-delays and the kind of time-window were chosen partly because they were
motivated by results from earlier studies [1. 7] and because they were successful from an
engineering point of view. The architecture was optimized for the recognition of phonemes
/b/. Id/ and Ig/ and could be applied to other phonemes without significant changes. In this
study we explored the performance of an artificial neural network that can automatically
learn its own architecture by learning time-delays and widths of the gaussian input windows.
The learning rules for the time-delays and the width of the windows were derived in the
same way that has been shown successful for the derivation of learning rules for weights.

Our results show that time-delays in artificial neural networks can be learned automatically.
The learning rule proposed in this study is able to improve performance significantly
compared to fixed delays if the network is initialized with random delays.

The width of an input window determines how much local temporal context is captured
by a single connection. Additionally. a large window means increased robustness against
temporal misalignments of the input tokens. A large window also means that the connection
transmits with a low temporal resolution. The learning rule for the widths of the windows
has to compromise between increased robustness against misaligned tokens and decreased
time-resolution. This is done by a gradient descent methOd.

If the network is initialized with the same widths that are used for the training runs with
constant widths. 70 - 80% of the windows in the network get smaller during training. Our
simulations show that it is possible to let a learning rule adjust parameters that determine
the temporal resolution of the network.

The comparison of the performances with one adaptive parameter set (either weights.
delays or widths) shows that the main parameters in the network are the weights. Delays
and widths seem to be of a lesser importance. but in combination with the weights the
delays can improve the performance. especially generalization. A Tempo 2 network with
trained delays and widths and random weights can classify 70% of the phonemes correctly.

The Tempo 2 Algorithm: Adjusting Time-Delays By Supervised Learning 161

This suggests that learning temporal parameters is effective.

The network achieves results comparable to a similar network with a handtuned architecture.
This suggests that the kind of learning rule could be helpful in applying time-delay neural
networks to problems where no knowledge about optimal time windows is available.
At higher levels of processing such adaptive networks could be used to learn rhythmic
(prosodic) relationships in fluent speech and other tasks.

Acknowledgements

The authors gratefully acknowledge the support by the McDonnel-Pew Foundation (Cog
nitive Neuroscience Program) and ATR Interpreting Telephony Research Laboratories.

References

[1] S.E. Blumstein and K.N. Stevens. Perceptual Invariance And Onset Spectra For Stop
Consonants In Different Vowel Environments. Journal of the Acoustical Society of
America, 67:648-{)62,1980.

[2] U. Bodenhausen. The Tempo Algorithm: Learning In A Neural Network With
Adaptive Time-Delays. In Proceedings of the IJCNN 90, Washington D.C., January
1990.

[3] U. Bodenhausen. Learning Internal Representations Of pattern Sequences In A Neural
Network With Adaptive Time-Delays. In Proceedings of the IJCNN 90, San Diego,
June 1990.

[4] S. Fahlman and C. Lebiere. The Cascade-Correlation Learning Architecture. In
Advances in Neural Information Processing Systems. Morgan Kaufmann, 1990.

[5] S. J. Hanson. Meiosis Networks. In Advances in Neural Information Processing
Systems. Morgan Kaufmann, 1990.

[6] Kamm, C. E .. Effects Of Neural Network Input Span On Phoneme Classification. In
Proceedings of the International Joint Conference on Neural Networks, June 1990.

[7] D. Kewley-Port. Time Varying Features As Correlates Of Place Of Articulation In
Stop Consonants. Journal of the Acoustical Society of America, 73:322-335, 1983.

[8] K. J. Lang, G. E. Hinton, and A.H. Waibel. A Time-Delay Neural Network Architec
ture For Speech Recognition. Neural Networks Journal, 1990.

[9] D. E. Rumelhart, G. E. Hinton, and RJ. Williams. Learning Internal Representations
By Error Propagation. In J.L. McClelland and D.E. Rumelhart, editors, Parallel
Distributed Processing; Explorations in the Microstructure of Cognition, chapter 8,
pages 318-362. MIT Press, Cambridge, MA, 1986.

[10] D.W. Tank: and JJ. Hopfield. Neural Computation By Concentrating Information In
Time. In Proceedings National Academy of Sciences, pages 1896-1900, Apri11987 .

[11] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. Lang. Phoneme Recognition
Using Time-Delay Neural Networks. IEEE, Transactions on Acoustics, Speech and
Signal Processing, March 1989.

[12] A. Waibel. Modular Construction Of Time-Delay Neural Networks For Speech Recog
nition. Neural Computation, MIT-Press, March 1989.

