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Abstract 

The three problems that concern us are identifying a natural domain of 
pattern classification applications of feed forward neural networks, select­
ing an appropriate feedforward network architecture, and assessing the 
tradeoff between network complexity, training set size, and statistical reli­
ability as measured by the probability of incorrect classification. We close 
with some suggestions, for improving the bounds that come from Vapnik­
Chervonenkis theory, that can narrow, but not close, the chasm between 
theory and practice. 

1 Speculations on Neural Network Pattern Classifiers 

(1) The goal is to provide rapid, reliable classification of new inputs from a 
pattern source. Neural networks are appropriate as pattern classifiers when the 
pattern sources are ones of which we have little understanding, beyond perhaps a 
nonparametric statistical model, but we have been provided with classified samples 
of features drawn from each of the pattern categories. Neural networks should be 
able to provide rapid and reliable computation of complex decision functions. The 
issue in doubt is their statistical response to new inputs. 

(2) The pursuit of optimality is misguided in the context of Point (1). Indeed, it 
is unclear what might be meant by 'optimality' in the absence of a more detailed 
mathematical framework for the pattern source. 

(3) The well-known, oft-cited 'curse of dimensionality' exposed by Richard Bell­
man may be a 'blessing' to neural networks. Individual network processing nodes 
(e.g., linear threshold units) become more powerful as the number of their inputs 
increases. For a large enough number n of points in an input space of d dimensions, 
the number of dichotomies that can be generated by such a node grows exponen­
tially in d. This suggests that, unlike all previous efforts at pattern classification 
that required substantial effort directed at the selection of low-dimensional feature 
vectors so as to make the decision rule calculable, we may now be approaching a 
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position from which we can exploit raw data (e.g., the actual samples in a time 
series or pixel values in an image). Even if we are as yet unable to achieve this, 
it is clear from the reports on actual pattern classifiers that have been presented 
at NIPS90 and the accompanying Keystone Workshop that successful neural net­
work pattern classifiers have been constructed that accept as inputs feature vectors 
having hundreds of components (e.g., Guyon, et al. [1990]). 

(4) The blessing of dimensionality is not granted if there is either a large subset 
of critically important components that will force the network to be too complex 
or a small subset that contains almost all of the information needed for accurate 
discrimination. The network is liable to be successful in those cases where the input 
or feature vector ~ has components that are individually nearly irrelevant, although 
collectively they enable us to discriminate well. Examples of such feature vectors 
might be the responses of individual fibers in the optic nerve, a pixel array for 
an image of an alphanumeric character, or the set of time samples of an acoustic 
transient. No one fiber, pixel value, or time sample provides significant information 
as to the true pattern category, although all of them taken together may enable 
us to do nearly error-free classification. An example in which all components are 
critically important is the calculation of parity. On our account, this is the sort of 
problem for which neural networks are inappropriate, albeit it has been repeatedly 
established that they can calculate parity. 

\Ve interpret 'critically important' very weakly as meaning that the subspace 
spanned by the subset of critically important features/inputs needs to be pa.rti­
tioned by the classifier so that there is at least one bounded region. If the nodes are 
linear threshold units then to carve out a bounded region, minimally a simplex, in 
a subspace of dimension c, where c is the size of the subset of critically important 
inputs, will require a network having at least c + 1 nodes in the first layer. 

(5) Neural networks have opened up a new application domain wherein in practice 
we can intelligently construct nonlinear pattern classifiers characterized by thou­
sands of parameters. In practice, nonlinear statistical models, ones not defined in 
terms of a covariance matrix, seem to be restricted to a few parameters. 

(6) Nonetheless, Occam's Razor advises us to be sparing of parameters. Vle 
should be particularly cautious about the problem of overfitting when the number 
of parameters in the network is not much less than the number of training samples. 
Theory needs to provide practice with better insight and guidelines for avoiding 
overfitting and for the use of restrictions on training time as a guard against over­
fitting a system with almost as many adjustable parameters as there are data points. 

(7) Points (1) and (5) combine to suggest that analytical approaches to network 
performance evaluation based upon typical statistical ideas may either be difficult 
to carry out or yield conclusions of little value to practice. There is no mismatch 
between statistical theory and neural networks in principle, but there does seem to 
be a significant mismatch in practice. While we are usually dealing with thousands 
of training samples, the complexity of the network means that we are not in a regime 
where asymptotic analyses (large sample behavior) will prove informative. On the 
other hand, the problem is far to complex to be resolved by 'exact' small sample 
analyses. These considerations serve to validate the widespread use of simulation 
studies to assess network design and performance. 
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2 The QED Architecture 

2.1 QED Overview 

One may view a classifier as either making the decision as to the correct class 
or as providing 'posterior' probabilities for the various classes. If we adopt the 
latter approach, then the use of sigmoidal units having a continuum of responses is 
appropriate. If, however, we adopt the first approach, then we require hard-limiting 
devices to select one of only finitely many (in our case only two) pattern classes. 
This is the approach that we adopt and it leads us to reliance upon linear threshold 
units (LTUs). 

We have focused our attention upon a flexible architecture consisting of a first 
hidden layer that is viewed as a quantizer of the input feature vector ~ and is 
therefore referred to as the Q-Iayer. The binary outputs from the Q-Iayer are then 
input to a second hidden layer whose function is to expand the dimension of the set 
of Q-Iayer outputs. The E-Iayer enables us to exploit the blessing of dimensionality 
in that by choosing it wide enough we can ensure that all Boolean functions of the 
binary outputs of the Q-Iayer are now implementable as linearly separable funct.ions 
of the E-Iayer outputs. Hence, to implement a binary classifier we need a t.hird layer 
consisting of only a single node to effect the desired decision, and this output layer is 
referred to as the D-Iayer. The layers taken together are called a QED architecture. 

2.2 Constructing the Q-Layer 

The first layer in a feedforward neural network having LTUs can always be viewed 
as a quantizer. Subsequent layers in the network only see the input ~ through the 
window provided by the first layer quantization. We do not expect to be able to 
quantize/partition the input space, say Rd for large d, into many small compact 
regions; to do so would require that m > > d, as noted in Point (4) of the preceding 
section. Hence, asymptotic results drawn from deterministic approximation theory 
are unlikely to be helpful here. One might have recourse to the large literature on 
vector quantization (e.g., the special issue on quantization of the IEEE Transac­
tions on Information Theory, March 1982), but we expect to quantize vectors of 
high dimension into a relatively small number of regions. Most of the information­
theoretic literature on vector quantization does not address this domain of very low 
information rate (bits/coordinate). A more promising direction is that of clustering 
algorithms (e.g., k-means as in Pollard [1982]' Darken and Moody [1990]) to guide 
the choice of Q-Iayer. 

2.3 Constructing the E,D-Layers 

Space limitations prevent us from detailed discussion of the formation of the E,D 
layers. In brief, the E-Iayer can be composed of 2m , often fewer, nodes where the 
weights to the ith node from the m Q-Iayer nodes are a binary representation of the 
index i with '0' replaced by '-1 '. No training is required for the E-Iayer. The desired 
D-Iayer responses of 0 or 1 are formed simply by assigning weight t to connections 
from E-Iayer nodes corresponding to input patterns from class t, and summing and 
thresholding at 1/2. The training set. T must be consulted to determine, say, on 
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the basis of majority rule, the category t E {O, I} to assign to a given E-Iayer node. 

2.4 The Width of the Q-Layer 

The overall complexity of the QED net depends upon the number m of nodes in 
the Q-Iayer. Hence, our proposal will only be of practical interest if m need not 
be large. As a first argument concerning the size of this parameter, if m ~ d 
then m hyperplanes in general position partition R d into 2m regions/cells. These 
cells are only of interest to us if we know how to assign them to pattern classes. 
From the perspective of Point (1) in the preceding section, we can only determine 
a classification of a cell if we have classified data points lying in the cell. Thus, 
if we wish to make rational use of m nodes in the Q-Iayer, then we should have 
in excess of 2m data points in our training set. If we have fewer data points in T 
then we will be generating a multitude of cells about whose categorization we know 
no more than that provided by possibly known prior class probabilities. Another 
estimate of the required sample size is obtained by assuming that data points are 
placed at random in the cells. In this case results summarized and improved on in 
Flatto [1982] suggest that we will need in excess of m2m points to have a reasonable 
proba.bility of having all cells occupied by data points. Many of the experimental 
studies reported at the meeting and workshops of NIPS90 assumed training set 
sizes no larger than about 10,000, implying that we need not consider m in excess 
of about 10. This number of nodes still yields a tractable QED architecture. 

A second argument on which to base an a priori determination of m can be made 
by considering the problem-average performance analyses carried out by Hughes 
[1968]. He found that the probability of correct classification for a randomly selected 
classification problem, with equal prior probabilities for selecting a class, varied with 
the number M of possible feature values as ~~::::;. This conclusion would suggest 
that a Q-Iayer containing as few as five properly selected nodes would suffice (Point 
(2)) for the design of a good pattern classifier. 

In any event, both of our arguments suggest that a QED net having no more than 
about 10 Q-Iayer nodes might be adequate for many applications. At worst we would 
have to contemplate about 1,000 nodes in the E-Iayer, and this is not a prohibitively 
large number given current directions in hardware development. Nonetheless, the 
contradiction between our suggestions and current practice suggests that our con­
clusions are only tentative, and they need to be explored through applications, 
simulations, and studies of statistical generalization ability. 

3 Sketch of Vapnik-Chervonenkis Theory of Statistical 
Generalization 

We assume that there are two pattern classes labelled by t E {O, I}. A pattern 

sample is reduced by a preprocessor to a feature vector ~ E Rd. Point (3) expresses 
the goal of having this reduction be significantly less than would be required by 
an approach that does not use neural networks. Neural networks are generica.lly 
labelled by 1] : Rd - {O, I}, 1](~) = t. N = {1]} denotes the family of networks 
described by an architecture. As above, m denotes the width of the first hidden 
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layer, and M denotes the number of cells/regions into which a net in N can partition 
Rd. Typically, M = 2m. The training set T = {(~,ti),i = 1,n}. We hypothesize 
that the elements of Tare i.i.d. as P(~, t), which is unknown. 

Performance is measured by error probabilities, 

E(1]) = P(1](£) # t). 
A good (it need not be unique) net in the family N is 

1]0 = argminl1 EAI'E(71), E{1]°) = minE(1]). 
l1EN 

£B denotes the Bayes error probability calculated on the basis of P(£, t). 

The empirical error frequency liT ( 1]) sustained by net 1] applied to T is 

1 n 

IIT(1]) = - L 11](£;) - til· 
n. ,=1 

A net in N having good classification performance on the training set T is 

1]* = argmi~EAI'"T(1]). 

By definition, 

Let mAl'( n) denote the VC growth function- the maximum, taken over all sets of n 
points in the input space, of the number of subsets that can be generated by the 
classification functions in N. Let V AI' denote the VC capacity, the largest n for 
which N can generate all 2n of the subsets of some such set of n points. 

For n > VAl' , Vapnik-Chervonenkis theory (Vapnik [1982]' Pollard [1984], Baum 
and Haussler [1989]) can be adapted to yield the VC upper bound 

P(E(1]*) - E(1]°) ~ () ~ 6(2~t~ e-nf2/16 = 6eV,N" log2n-logV,N" !-n!2/ 16 • 

AI'. 

Let nc denote the critical value of sample size n for which the exponent first becomes 
negative. If n < nc then the upper bound will exceed unity and be uninformative. 
However, if n > nc then the upper bound will converge to zero exponentially fast 
in sample size. An approximate solution for nc from the VC upper bound yields 

16 32e 32e 
nc ~ 2" VAl' (log -2 + log log -2 ). 

( ( ( 

If for purposes of illustration we take ( = .1, VAl' = 50, then we find that nc ~ 
902,000. This conclusion, obtained by a direct application of Vapnik-Chervonenkis 
theory, disagrees by orders of magnitude with the experience of practitioners gained 
in training such low-complexity networks (about 50 connections). 

4 Tightening the VC Argument 

There are several components of the derivation of VC bounds that involve approx­
imations and these, therefore, can be sources for improving these bounds. These 
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approximations include recourses to Chernoff/Hoeffding bounds, union bounds, es­
timatesofm,N'(n), and the relation between &(1/*)-&(1/0) and 2supf/ 1117(1/)-&(1])1. 
There is a belief among members of the neural network community that the weak­
ness of the VC argument lies in the fact that by dealing with all possible underlying 
distributions l' it is dealing with the worst case, and this worst case forces the large 
sample sizes. We agree with all but the last part of this belief. VC arguments being 
independent of the choice of l' do indeed have to deal with worst cases. However, 
the worst case is dealt with through recourse to Chernoff/Hoeffding inequalities, 
and it is easily shown that these inequalities are not the source of our difficulties. 
A more promising direction in which to seek realistic estimates of training set size 
is through reductions in m,N'( n) achieved through constraints on the architecture 
N. One such restriction is through training time bounds that in effect restrict the 
portion of N that can be explored. Two other restrictions are discussed below. 

5 Restricting the Architecture 

5.1 Parameter Quantization 

We can control the growth function contribution by quantizing all network pa­
rameters to k bits and thereby restricting N. The VC dimension of a LTU with 
parameters quantized to k ~ 1 bits equals the VC dimension of the LTU with real­
valued parameters. Hence, VC arguments show no improvement. However, there 
are now only 2 km(d+l) distinct first layers of m nodes accepting vectors from Rd. 
Hence, there are no more than 2 2m +km(d+l) QED nets, and the restricted N has 
only finitely many members. 

Direct application of the union bound and Chernoff inequality yield 

1'(&(1/*) - &(1/0) ~ i) ~ 22+2m+km(d+l)e-nf2/2. 

When i = .1, m = 5, d = 10 this bound becomes less than unity for n > nc = 
4710 + 7625k. Thus, even I-bit quantization suggests a training sample size 111 

excess of 4700 for reliable generalizat.ion of even this simple network. 

5.2 Clustering 

The growth function m,N'(n) 'overest.imates' the number of cases we need to be 
concerned with in dealing with the random variable Z(1]) = 1117(1/) - 1171 (1/)1 en­
countered in VC theory derivations. \Ve are only interested in whether Z exceeds 
a prescribed precision level f, and not whether, say, Z(1/d differs from Z(172) by as 
little as ~ due to 1]2 disagreeing with 1/1 at only a single sample point. 

To enforce consideration of networks as being different only if they yield classifica­
tions of T disagreeing substantially with each other we might proceed by clustering 
the points in T into I\, clusters for each of the two classes. We then train the network 
so that decision boundaries do not subdivide individual clusters (see also Devroye 
and Wagner [1979]). The union bound and Chernoff inequality yield 

1'(&(1]*) - &(1/0) ~ f) ~ 22+4"e-nf2/2, 

a result that is independent of the input dimension d. 
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If we again choose ( = .1 then the sample size n required to make this upper bound 
less than unity is about 280 + 560K. For accuracy at the precision level { we should 
expect to have K ~ 1/(. Hence, the least acceptable sample size should exceed 
5,880. If we hope to make full use of the capabilities of the net, then we should 
expect to have clusters in almost all of the 2m cells. If we take this to mean that 
21>: = 2m , then n > 9,240 for m = 5. If clusters were equally likely to fall into each 
of the M cells then we would require M (log M + Q') clusters for a probability of no 
empty cell being approximately e-e-a (e.g., Flatto [1982]). Roughly, for m = 5 we 
should then aim for 21>: = 110 and a sample size exceeding 31,000. Large as this 
estimate is, it is still a factor of 30 below what a direct application of VC theory 
yields. 
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