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ABSTRACT 
Distinctive electrocardiogram (EeG) patterns are created when the heart 
is beating normally and when a dangerous arrhythmia is present. Some 
devices which monitor the EeG and react to arrhythmias parameterize 
the ECG signal and make a diagnosis based on the parameters. The 
author discusses the use of a neural network to classify the EeG signals 
directly. without parameterization. The input to such a network must 
be translation-invariant. since the distinctive features of the EeG may 
appear anywhere in an arbritrarily-chosen EeG segment. The input 
must also be insensitive to the episode-to-episode and patient-to-patient 
variability in the rhythm pattern. 

1 INTRODUCTION 
Figure 1 shows internally-recorded transcardiac ECG signals for one patient. The top 
trace is an example of normal sinus rhythm (NSR). The others are examples of two 
arrhythmias: ventricular tachycardia (V1) and ventricular fibrillation (VF). Visually. the 
patterns are quite distinctive. Two problems make recognition of these patterns with a 
neural net interesting. 

The first problem is illustrated in Figure 2. All traces in Figure 2 are one second samples 
of NSR. but the location of the QRS complex relative to the start of the sample is 
shifted. Ideally. one would like a neural network to recognize each of these presentations 
as NSR. without preprocessing the data to "center" it. The second problem can be 
discerned by examining the two VT traces in Figure 1. Although quite similar. the two 
patterns are not exactly the same. Substantial variation in signal shape and repetition rate 
for NSR and VT (VF is inherently random) can be expected. even among rhythms 
generated by a single patient. Patient-to-patient variations are even greater. The neural 
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network must ignore variations within rhythm types, while retaining the distinctions 
between rhythms. This paper discusses a simple transformation of the ECG time series 
input which is both translation-invariant and fairly insensitive to rate and shape changes 
within rhythm types. 
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Figure 1: ECG Rhythm Examples Figure 2: Five Examples ofNSR 

2 DISCUSSION 
If test input to a first order neural network is rescaled, rotated, or translated with respect to 
the training data, it generally will not be recognized. A second or higher order network 
can be made invariant to these transformations by constraining the weights to meet 
certain requirements[Giles, 1988]. The input to the jth hidden unit in a second order 
network with N inputs is: 

N N-l N-i 

L wili + L L w(i,i+k)jXixi+k 
i=1 i=1 k=1 

(1) 

Translation invariance is introduced by constraining the weights on the fIrst order inputs 
to be independent of input position, and the second order weights to depend only on the 
difference between indices (k), rather than on the index pairs (i,i+k)[Giles, 1988]. 
Rewriting equation (1) with these constraints gives: 
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N N-l N-k 

Wj L xi + L Wkj L xi~+k (2) 

i=l k=l i=l 

This is equivalent to a fIrst order neural network where the original inputs, xi' have been 
replaced by new inputs, Yi' consisting of the following sums: 

N N-k 

Yk = L xixi+k' k=1,2, ... .N-l 
i=l 

(3) 

While a network with inputs in the form of equation (3) is translation invariant, it is 
quite sensitive to shape and rate variations in the ECG input data. For ECG recognition, 
a better function to compute is: 

N N-k 

Yo = L ABS(xi) , Yk = L ABS(xi - ~+k) , k=1,2, ... ,N-l (4) 

i=l i=l 

Both equations (3) and (4) produce translation-invariant outputs, as long as the input time 
series contains a "shape" which occupies only part of the input window, for example, the 
single cycle of the sine function in Figure 3a. A periodic time series, like the sine wave 
in Figure 3b, will not produce a truly translation-invariant output. Fortunately, the 
translation sensitivity introduced by applying equations (3) or (4) to periodic time series 
is small for small k, and only becomes important when k becomes large. One can see 
this by considering the extreme case, when k=N-l, and the fInal "sum" in equation (4) 
becomes the absolute value of the difference between the fIrst and the last point in the 
input time series; clearly, this value will vary as the sine wave in Figure 3b is moved 
through the input window. If the upper limit on the sum over k gets no larger than N/2, 
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Figure 3: Examples of signals which will (a) and will not (b) have invariant transforms 



Using A Translation-Invariant Neural Network 243 

equations (3) and (4) provide a neural network input which is nearly translation-invariant 
for realistic time series. Additionally, the output of equation (4) can be used to 
discriminate among NSR, VT, and VF, but is not unduly sensitive to variations within 
each rhythm type. 

The ECG signals used in this experiment were drawn from a data set of internally recorded 
transcardiac ECG signals digitized at 100 Hz. The data set comprised 203 10-45 second 
segments obtained from 52 different patients. At least one segment of NSR and one 
segment of an arrhythmia was available for each patient. In addition, an "exercise" NSR 
at 150 BPM was artificially constructed by cutting baseline out of the natural resting 
NSR segment. Arrhythmia detection systems which parameterize the ECG can have 
difficulty distinguishing high rate NSR's from slow arrhythmias. 

To obtain a training data set for the neural network, short pieces were extracted from the 
original rhythm segments. Since the rhythms are basically periodic, it was possible to 
chose the endpoints so that the short, extracted piece could be be repeated to produce a 
facsimile of the original signal. The upper trace in Figure 4 shows an original VT 
segment. The boxed area is the extracted piece. The lower trace shows the extracted piece 
chained end-to-end to construct a segment as long as the original. The segments 
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Figure 4: Original and Artificially-Constructed Training Segments 
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constructed from the short. extracted pieces were used as training input Typically. the 
training data segment contained less than 25% of the original data. 

The length of the input window was arbitrarily set at 1.35 seconds (135 points); by 
choosing this window. all NSR inputs were guaranteed to include at least one QRS 
complex. The upper limit on the sum over k in equation (4) was set to 50. The 
resulting 51 inputs were presented to a standard back propagation network with seven 
hidden units and four outputs. Although one output is sufficient to discriminate between 
NSR and an arrhythmia. the networks were trained to differentiate among two types of VT 
(generally distinguished by rate). and VF as well. 

A separate training set was constructed and a separate network was trained for each patient. 
The weights thus derived for a given patient were then tested on that patient's original 
rhythm segments. To test the translation in variance of the network. every possible 
presentation of an input rhythm segment was tested. To do this. a sliding window of 135 
points was moved through the input data stream one point (1/100th of a second) at a 
time. At each point. the output of equation (4) (appropriately normalized) was presented 
to the network. and the resulting diagnosis recorded. 

3 RESULTS 
A percentage of correct diagnoses was calculated for each segment of data. For a segment 
T seconds long. there are 100x(T-1.35) different presentations of the rhythm. 
Presentations which included countershock. burst pacing. gain changes on the recording 
equipment. post-shock rhythms. etc. were excluded. since the network had not been 
trained to recognize these phenomena. The percentage correct was then calculated for the 
remaining presentations as: 

l00x(Number of correct diagnoses )/(Number of presentations) 

The percentage of correct diagnoses for each patient was calculated similarly. except that 
all segments for a particular patient were included in the count. Table 1 presents these 
results. 

Table 1: Results 

Patients Segments 

100% Correct 29 163 
99%-90% Correct 19 23 
90%-80% Correct 3 6 
80%-70% Correct 0 4 
<70% Correct 0 1 
Could Not Be Trained 1 6 

Total 52 203 



Using A Translation-Invariant Neural Network 245 

The network could not be trained for one patient. This patient had two arrhythmia 
segments. one identified as VT and the other as VF. Visually. the two traces were 
extremely similiar; after twenty thousand iterations, the network could not distinguish 
them. The network could certainly have been trained to distinguish between NSR and 
those two rhythms, but this was not attempted. 

The number of segments for which all possible presentations of the rhythm were 
diagnosed correctly clearly establishes the translation invariance of the input. The 
network was also quite successful in distinguishing among NSR and various arrhythmias. 
Unfortunately, for application in inplantable defibrillators or even critical care 
monitoring, the network must be more nearly perfect. 

The errors the network made could be separated into two broad classes. First, short 
segments of very erratic arrhythmias were misdiagnosed as NSR. Figure 5 illustrates this 
type of error. The error occurs because NSR is mainly characterized by a lack of 
correlation. Typically. the misdiagnosed segment is quite short. 1 second or less. This 
type of error might be avoided by using longer (longer than 1.35 second) input windows 
which could bridge the erratic segments. Also, a more responsive automatic gain control 
on the signal might help. since the erratic segments generally had a smaller amplitude 
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Figure 5: Ventricular Fibrillation Segment Misdiagnosed as NSR 
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than the surrounding segments. The network response to input windows containing large 
shifts in the amplitude of the input signal (for example, countershock and gain changes) 
was usually NSR. 

The second class of errors occurred when the network misdiagnosed rhythms which were 
not included in the training set. For example, one patient had a few beats of a very slow 
VT in his NSR segment. This slow VT was not extracted for training. Only a fast (200 
BPM) VT and VF were presented to this network as possible arrhythmias. Consequently, 
during testing. the network identified the slow VT as NSR. The network did identify 
some rhythms it was not trained on, but only if these rhythms did not vary too much 
from the training rhythms. Generally, the rate of the "unknown" rhythm had to be within 
20 BPM of a training rhythm to be recognized. Morphology is also important, in that 
very regular rhythms, such as the top trace in Figure 6, and noisier rhythms, like the 
bottom trace, appear quite different to the network. 
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Figure 6: Ventricular Tachycardias with Significant Morphology Differences 

The misdiagnosis of rhythms not included in the training set can only be corrected by 
enlarging the training set. In the future, an attempt will be made to create a "generic" set 
of typical arrhythmias drawn from the entire data set, rather than taking arrhythmia 
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samples from each patient only. Since the networks can generalize somewhat, it is 
possible that a network trained on an individual patient's NSR and the "generic" 
arrhythmia set may be able to recognize all arrhythmias, whether they are included in the 
training set or noL 
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