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ABSTRACT 

A new form of the deterministic Boltzmann machine (DBM) learn­
ing procedure is presented which can efficiently train network mod­
ules to discriminate between input vectors according to some cri­
terion. The new technique directly utilizes the free energy of these 
"mean field modules" to represent the probability that the criterion 
is met, the free energy being readily manipulated by the learning 
procedure. Although conventional deterministic Boltzmann learn­
ing fails to extract the higher order feature of shift at a network 
bottleneck, combining the new mean field modules with the mu­
tual information objective function rapidly produces modules that 
perfectly extract this important higher order feature without direct 
external supervision. 

1 INTRODUCTION 

The Boltzmann machine learning procedure (Hinton and Sejnowski, 1986) can be 
made much more efficient by using a mean field approximation in which stochastic 
binary units are replaced by deterministic real-valued units (Peterson and Anderson, 
1987). Deterministic Boltzmann learning can be used for "multicompletion" tasks 
in which the subsets of the units that are treated as input or output are varied 
from trial to trial (Peterson and Hartman, 1988). In this respect it resembles other 
learning procedures that also involve settling to a stable state (Pineda, 1987). Using 
the multicompletion paradigm, it should be possible to force a network to explicitly 
extract important higher order features of an ensemble of training vectors by forcing 
the network to pass the information required for correct completions through a 
narrow bottleneck. In back-propagation networks with two or three hidden layers, 
the use of bottlenecks sometimes allows the learning to explictly discover important. 
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underlying features (Hinton, 1986) and our original aim was to demonstrate that 
the same idea could be used effectively in a DBM with three hidden layers. The 
initial simulations using conventional techniques were not successful, but when we 
combined a new type of DBM learning with a new objective function, the resulting 
network extracted the crucial higher order features rapidly and perfectly. 

2 THE MULTI-COMPLETION TASK 

Figure 1 shows a network in which the input vector is divided into 4 parts. Al is a 
random binary vector. A2 is generated by shifting Al either to the right or to the 
left by one "pixel", using wraparound. B1 is also a random binary vector, and B2 
is generated from B1 by using the same shift as was used to generate A2 from Al. 
This means that any three of AI, A2, B1, B2 uniquely specify the fourth (we filter 
out the ambiguous cases where this is not true). To perform correct completion, the 
network must explicitly represent the shift in the single unit that connects its two 
halves. Shift is a second order property that cannot be extracted without hidden 
units. 

A2 

Al 

Figure 1. 

B2 

BI 

3 SIMULATIONS USING STANDARD DETERMINISTIC 
BOLTZMANN LEARNING 

The following discussion assumes familiarity with the deterministic Boltzmann learn­
ing procedure, details of which can be obtained from Hinton (1989). During the 
positive phase of learning, each of the 288 possible sets of shift matched four-bit 
vectors were clamped onto inputs AI, A2 and B1, B2, while in the negative phase, 
one of the four was allowed to settle undamped. The weights were changed after 
each training case using the on-line version of the DBM learning procedure. The 
choice of which input not to damp changed systematically throughout the learning 
process so that each was left undamped equally often. This technique, although 
successful in problems with only one hidden layer, could not train the network to 
correctly perform the multicompletion task where any of the four input layers would 
settle to the correct state when the other three were clamped. As a result, the single 
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central unit failed to extract shift. In general, the DBM learning procedure, like its 
stochastic predecessor, seems to have difficulty learning tasks in multi-hidden layer 
nets. This failure led to the development of the new procedure which, in one form, 
manages to correctly extract shift without the need for many hidden layers or direct 
external supervision. 

4 A NEW LEARNING PROCEDURE FOR MEAN FIELD 
MODULES 

A DBM with unit states in the range [-1,1] has free energy 

(1) 

The DBM settles to a free energy minimum, F*, at a non-zero temperature, where 
the states of the units are given by 

1 
Yi = tanh( T 2: Yj Wij ) 

j 

(2) 

At the minimum, the derivative of F* with respect to a particular weight (assuming 
T = 1) is given by (Hinton, 1989) 

(3) 

Suppose that we want a network module to discriminate between input vectors that 
"fit" some criterion and input vectors that don't. Instead of using a net with an 
output unit that indicates the degree of fit, we could view the negative of the mean 
field free energy of the whole module as a measure of how happy it is with the 
clamped input vector. From this standpoint, we can define the probability that 
input vector Q fits the criterion as 

1 
(4) 

Pcx = (1 + eF~) 

where F~ is the equilibrium free energy of the module with vector Q clamped on 
the inputs. 

Supervised training can be performed by using the cross-entropy error function 
(Hinton, 1987): 

N+ N_ 

C = - L log(pcx) - L log(1- P/3) (5) 
i=cx j=/3 

where the first sum is over the N + input cases that fit the criterion, and the second 
is over the N _ cases that don't. The cross-entropy expression is used to specify error 
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derivatives for Pa and hence for F~. Error derivatives for each weight can then be 
obtained by using equation (3), and the module is trained by gradient descent to 
have high free energy for the "negative" training cases and low free energy for the 
"positive" cases. 

Thus, for each positive case 

1 olog(Pa) r oF~ 
OWij 1 + eF: 

e'" --
OWij 

For each negative case, 

olog(1 - P13) 

OWij 

1 
1 + e- F: 

(-YiYj) 

of* _13_ 
OWij 

To test the new procedure, we trained a shift detecting module, composed of the 
the input units Al and A2 and the hidden units HA from figure 1, to have low 
free energy for all and only the right shifts. Each weight was changed in an on-line 
fashion according to 

1 
~w;J' = f Y;YJ' . 1 + e-F~ • 

for each right shifted case, and 

for each left shifted case. Only 10 sweeps through the 24 possible training cases 
were required to successfully train the module to detect shift. The training was 
particularly easy because the hidden units only receive connections from the input 
units which are always clamped, so the network settles to a free energy minimum 
in one iteration. Details of the simulations are given in Galland and Hinton (1990). 

5 MAXIMIZING MUTUAL INFORMATION BETWEEN 
MEAN FIELD MODULES 

At first sight, the new learning procedure is inherently supervised, so how can it 
be used to discover tha.t shift is an important underlying feature? One method 



Discovering High Order Features with Mean Field Modules 513 

is to use two modules that each supervise the other. The most obvious way of 
implementing this idea quickly creates modules that always agree because they are 
always "on". If, however, we try to maximize the mutual information between the 
stochastic binary variables represented by the free energies of the modules, there is 
a strong pressure for each binary variable to have high entropy across cases because 
the mutual information between binary variables A and B is: 

(6) 

where HAB is the entropy of the joint distribution of A and B over the training 
cases, and H A and H B are the entropies of the individual distributions. 

Consider two mean field modules with associated stochastic binary variables A,B 
E {O, I}. For a given case a, 

1 
p(Aa = 1) = F. 

1 +e A.at 
(7) 

where FA a is the free energy of the A module with the training case a clamped on 
the input: 

We can compute the probability that the A module is on or off by averaging over 
the input sample distribution, with pa being the prior probability of an input case 
a: 

p(A=O) = 1- p(A=I) 

Similarly, we can compute the four possible values in the joint probability distribu­
tion of A and B: 

p(A=I,B=I) 

p(A=O,B=I) = p(B=I)-p(A=I,B=I) 

p(A=I,B=O) = p(A=I)-p(A=I,B=I) 

p( A = 0, B = 0) = 1 - p( B = 1) - p( A = 1) + p( A = 1, B = 1) 

Using equation (3), the partial derivatives of the various individual and joint proba­
bility functions with respect to a weight Wile in the A module are readily calculated. 

(8) 
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op(A:: 1, B == 1) == """ pa op(Aa = 1) p(Ba = 1) 
OW·k L.J OW·k , a ' 

(9) 

The entropy of the stochastic binary variable A is 

HA = - <logp(A) > = - 2: p(A::a) logp(A=a) 
a=O,l 

The entropy of the joint distribution is given by 

HAB - <logp(A, B) > 
- 2:p(A=a, B=b) logp(A=a, B=b) 

a,b 

The partial derivative of I(A; B) with respect to a single weight Wik in the A module 
can now be computed; since HB does not depend on Wik, we need only differentiate 
HA and HAB. As shown in Galland and Hinton (1990), the derivative is given by 

oI(A; B) 

OWik OWik OWik 

[ 
p(A -1) 2: pa (p(Aa == 1) - 1) p(Aa == 1)(YiYk) log p(A :0) 

a 

_ p(Ba = 1) log p(A= I, B= 1) _ p(Ba =0) log p(A= I, B=O)] 
p(A=O, B= 1) p(A=O, B= 0) 

The above derivation is drawn from Becker and Hinton (1989) who show that mutual 
information can be used as a learning signal in back-propagation nets. We can now 
perform gradient ascent in I(A; B) for each weight in both modules using a two-pass 
procedure, the probabilities across cases being accumulated in the first pass. 

This approach was applied to a system of two mean field modules (the left and 
right halves of figure 1 without the connecting central unit) to detect shift. As in 
the multi-completion task, random binary vectors were clamped onto inputs AI, 
A2 and Bl, B2 related only by shift. Hence, the only way the two modules can 
provide mutual information to each other is by representing the shift. Maximizing 
the mutual information between them created perfect shift detecting modules in 
only 10 two-pass sweeps through the 288 training cases. That is, after training, 
each module was found to have low free energy for either left or right shifts, and 
high free energy for the other. Details of the simulations are again given in G all an cl 
and Hinton (1990). 
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6 SUMMARY 

Standard deterministic Boltzmann learning failed to extract high order features 
in a network bottleneck. We then explored a variant of DBM learning in which 
the free energy of a module represents a stochastic binary variable. This variant 
can efficiently discover that shift is an important feature without using external 
supervision, provided we use an architecture and an objective function that are 
designed to extract higher order features which are invariant across space. 
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