
Designing Application-Specific Neural Networks 447

Designing Application-Specific
Neural Networks

Using the Genetic Algorithm

Steven A. Harp, Tariq Samad, Aloke Guha
Honeywell SSDC

1000 Boone Avenue North
Golden Valley, MN 55427

ABSTRACT
We present a general and systematic method for neural network
design based on the genetic algorithm. The technique works in
conjunction with network learning rules, addressing aspects of
the network's gross architecture, connectivity, and learning rule
parameters. Networks can be optimiled for various application
specific criteria, such as learning speed, generalilation, robustness
and connectivity. The approach is model-independent. We
describe a prototype system, NeuroGENESYS, that employs the
backpropagation learning rule. Experiments on several small
problems have been conducted. In each case, NeuroGENESYS
has produced networks that perform significantly better than the
randomly generated networks of its initial population. The com
putational feasibility of our approach is discussed.

1 INTRODUCTION
With the growing interest in the practical use of neural networks, addressing the
problem of customiling networks for specific applications is becoming increas
ingly critical. It has repeatedly been observed that different network structures
and learning parameters can substantially affect performance. Such important
aspects of neural network applications as generalilation, learning speed, connec
tivity and tolerance to network damage are strongly related to the choice of

448 Harp, Samad and Guha

network architecture. Yet there are few analytic results, and few heuristics, that
can help the application developer design an appropriate network.

We have been investigating the use of the genetic algorithm (Goldberg, 1989;
Holland, 1975) for designing application-specific neural networks (Harp, Samad
and Guha, 1989ab). In our approach, the genetic algorithm is used to evolve
appropriate network structures and values of learning parameters. In contrast,
other recent applications of the genetic algorithm to neural networks (e.g., Davis
[1988], Whitley [1988]) have largely restricted the role of the genetic algorithm to
updating weights on a predetermined network structure-another logical
approach.

Several first-generation neural network application development tools already
exist. However, they are only partly effective: the complexity of the problem,
our limited understanding of the interdependencies between various network
design choices, and the extensive human effort involved permit only limited
exploration of the design space. An objective of our research is the development
of a next-generation neural network application development tool that can syn
thesise optimised custom networks. The genetic algorithm has been distinguished
by its relative immunity to high dimensionality, local minima and noise, and it is
therefore a logical candidate for solving the network optimilation problem.

2 GENETIC SYNTHESIS OF NEURAL NETWORKS
Fig. 1 outlines our approach. A network is represented by a blueprint-a bit
string that encodes a number of characteristics of the network, including struc
tural properties and learning parameter values. Each blueprint directs the crea
tion of an actual network with random initial weights. An instantiated network
is trained using some predetermined training algorithm and training data, and
the trained network can then be tested in various ways-e.g., on non-training
inputs, after disabling some units, and after perturbing learned weight values.
Mter testing, a network is evaluated-a fitneu estimate is computed for it based
on appropriate criteria. This process of instantiation, training, testing and
evaluation is performed for each of a population of blueprints.

Mter the entire population is evaluated, the next generation of blueprints is pro
duced. A number of genetic operator3 are employed, the most prominent of these
being crouotler, in which two parent blueprints are spliced together to produce a
child blueprint (Goldberg, 1989). The higher the fitness of a blueprint, the
greater the probability of it being selected as a parent for the subsequent genera
tion. Characteristics that are found useful will thereby tend to be emphasized in
the next generation, whereas harmful ones will tend to be suppressed.

The definition of network performance depends on the application. If the appli
cation requires good generalilation capabilities, the results of testing on
(appropriately chosen) non-training data are important. If a network capable of
real-time learning is required, the learning rate must be optimiled. For fast
response, the sile of the network must be minimized. If hardware (especially
VLSI) implementation is a consideration, low connectivity is essential. In most
applications several such criteria must be considered. This important aspect of
application-specific network design is covered by the fitness function. In our
approach, the fitness of a network can be an arbitrary function of several distinct

Sampling & Synthesis
of Network
-Blueprints·

Designing Application-Specific Neural Networks 449

Genetic
Algorithm

blueprint
fitness

estimates

Network
Performance
Evaluation

testing

I Test Stimuli L...-_--l

Figure 11 A population ot network ~lueprint8" 18 eyelically
updated by the genetic algorithm baaed on their fitne88.

performance and cost criteria, some or all of which can thereby be simultaneously
optimized.

3 NEUROGENESYS
Our approach is model-independent: it can be applied to any existing or future
neural network model (including models without a training component). As a
first prototype implementation we have developed a working system called Neu
roGENESYS. The current implementation uses a variant (Samad, 1988) of the
backpropagation learning algorithm (Werbos, 1974; Rumelhart, Hinton, and
Williams, 1985) as the training component and is restricted to feedforward net
works.

Within these constraints, NeuroGENESYS is a reasonably general system. Net
works can have arbitrary directed acyclic graph structures, where each vertex oC
the graph corresponds to an 4re4 or layer oC units and each edge to a projection
Crom one area to another. Units in an area have a spatial organization; the
current system arrays units in 2 dimensions. Each projection specifies indepen
dent radii oC connectivity, one Cor each dimension. The radii of connectivity
allow localized receptive field structures. Within the receptive fields connection
densities can be specified. Two learning parameters are associated with both pro
jections and areas. Each projection has a learning rate parameter ("11" in back
propagation) and a decay rate Cor 11. Each area has 11 and 11-decay parameters
for threshold weights.

These network characteristics are encoded in the genetic blueprint. This bitstring
is composed oC several segments, one Cor each area. An area segment consists of
an area parameter specification (APS) and a variable number of projection

450 Harp, Samad and Guha

specification fields (PSFs), each of which describes a projection from the area to
some other area. Both the APS and the PSF contain values for several parame
ters Cor areas and projections respectively. Fig. 2 shows a simple area segment.
Note that the target of a projection can be specified through either Ab"olute or
Relative addressing. More than one projections are possible between two given
areas; this allows the generation of receptive field structures at different scales
and with different connection densities, and it also allows the system to model the
effect of larger initial weights. In our current implementation, all initial weights
are randomly generated small values from a fixed uniform distribution. In the
near future, we intend to incorporate some aspects of the distribution in the
genetic blueprint.

X-Share
V -Share----'

Initial Threhsold Eta-----'
Threshold Eta Decay ----....I

start of ProjectiOn Marker --.....
Connection Density

Initial Eta
Ela Decay

--

~ AroaN
- ~

PROJEdTioN
~arameters

-
- X-Radius

V-Radius
T arget Address
Address Mode

Figure 3. Network Blueprint Representation

In NeuroGENESYS, the score of a blueprint is computed as a linear weighted
sum of several performance and cost criteria, including learning speed, the results
of testing on a "test set", the numbers of units and weights in the network, the
results of testing (on the training set) after disabling some of the units, the
results of testing (on the training set) after perturbing the learned weight values,
the average fanout of the network, and the maximum fanout for any unit in the
network. Other criteria can be incorporated as needed. The user of Neuro
GENESYS supplies the weighting factors at the start of the experiment, thereby
controlling which aspects of the network are to be optimized.

4 EXPERIMENTS
NeuroGENESYS can be used for both classification and function approximation
problems. We have conducted experiments on three classification problems-digit
recognition from 4x 8 pixel images, exclusive-OR (XOR), and simple convexity

Designing Application-Specific Neural Networks 451

detection; and one function approximation problem-modeling one cycle of a sine
function. Various combinations of the above criteria have been used. In most
experiments NeuroGENESYS has produced appropriate network designs in a
relatively small number of generations « 50).

Our first experiment was with digit recognition, and NeuroGENESYS produced a
solution that surprised us: The optimized networks had no hidden layers yet
learned perfectly. It had not been obvious to us that this digit recognition prob
lem is linearly separable. Even in the simple case of no-hidden-Iayer networks,
our earlier remarks on application-specific design can be appreciated. When Neu
roGENESYS was asked to optimile for average fanout for the digit recognition
task as well as for perfect learning, the best network produced learned perfectly
(although comparatively slowly) and had an average fanout of three connections
per unit; with learning speed as the sole optimization criterion, the best network
produced learned substantially faster (48 iterations) but it had an average fanout
of almost an order of magnitude higher.

The XOR problem, of course, is prototypically non-linearly-separable. In this
case, NeuroGENESYS produced many fast-learning networks that had a
"bypass" connection from the input layer directly to the output layer (in addition
to connections to and from hidden layers); it is an as yet unverified hypothesis
that these bypass connections accelerate learning.

In one of our experiments on the sine function problem, NeuroGENESYS was
asked to design networks for moderate accuracy-the error cutoff during training
was relatively high. The networks produced typically had one hidden layer of
two units, which is the minimum possible configuration for a sufficiently crude
approximation. When the experiment was repeated with a low error cutoil', intri
cate multilayer structures were produced that were capable of modeling the train
ing data very accurately (Fig. 3). Fig. 4 shows the learning curve for one sine
function experiment. The" Average" and "Best" scores are over all individuals in
the generation, while "Online" and "amine" are running averages of Average
and Best, respectively. Performance on this problem is quite sensitive to initial
weight values, hence the non-monotonicity oC the Best curve. Steady progress
overall was still being observed when the experiment was terminated.

We have conducted control studies using random search (with best retention)
instead of the genetic algorithm. The genetic algorithm has consisten tly proved
superior. Random search is the weakest possible optimilation procedure, but on
the other hand there are few sophisticated alternatives for this problem-the
search space is discontinuous, largely unknown, and highly nonlinear.

5 COMPUTATIONAL EFFICIENCY
Our approach requires the evaluation of a large number of networks. Even on
some of our small-scale problems, experiments have taken a week or longer, the
bottleneck being the neural network training ~lgorithm. While computational
feasibility is a real concern, Cor several reasons we are optimistic that this
approach will be practical for realistic applications:

• The hardware platform for our experiments to date has been a Symbolics
computer without any floating-point support. This choice has been ideal

452 Harp, Samad and Guha

GENESYS •

tc IU90~ teNt
Ion' pe-r IluP\ : 49

.lton ~ he: 39
C"0'50\l.") : a .8

of c:rO'SO\le'r pt s : 1 Z
"'-.JtetlC)f"l): a,31
on Rete: 9.81
I"trons: T., 1'10

81n eac.h ~e"e t ion: Ye, "0

I
1.4'
1 . 34 18.6' 4'48 J.69

~~~~ 
9 . 58 29 . 65 19999 5 .9' 
9 . 2' 12.43 2956 J . 18 
a.45 19.'8 19999 5.98 
1.4' 29 . 89 19999 5 .9' 
1 . 6' .'.41 4632 7 5~ 
1 . 46 29.99 19099 5 . 98 
I." 15 . 31 5"4 5.98 
1 . 4' 21.93 19999 5 . 83 
9 . 31 21 . 54 5384 J.39 
1 . 4' 21 . 3' U_ 5 . 88 
8 . a9 9.11 S S . 99 

• 
14 11 
18 34 ' . 9a P . 88 

-.! ... ~~ 
, CJ 5.09 t 92 

22 13' 12.99 9 . 99 
2 1 1 . 99 a . 99 
, 8 6 . SU 9.99 

1'4 36 ' . 00 B.la 
2 2 2.99 8 . S9 

14 32 5 . 91 9 . 99 
19 11 ' . 91 9 . 99 
18 15 5 . 9a a.a 

2 2 2. 99 9 . 89 
8 Q 9.89 9.81 r PROJ-'7°U'PUr-AilEil 

PJPOJ-4 A A-

/, PROJ- 8 

~ 
PROJ-9 -1 ~,of-

I PROJ
-

6 ~q§i~::AZJGiibL::miC:::::=========:) 
HPUI- PROJ-I / 

/ 
1't!OJ-2 ' 

I 

PIfOJ - 31 

Abort Bral..., •• h Chart Cl.... Continue 
Ilun Sav. She... StAtu. 

jAr •• II: 

tot.I .. h.' 12 .. II te 3214128 

Itf'enaton 1 : t 2" I 18321114 128 
Dt.....,.to" 2: '2"" til 32 S4 1'8 

Intti.l Et. n"lre.hold : 0. 10.20" a., 1 II 3.21. ' ' 2.1 
,,,,, • .nold (t.. &1008 : ' •• 0.002 0004 0008 a.QUI 0.032 a.olU 0. t21 

(Mtt Abort 

LaM 

Figure I. The NeuroGENESYS interfaee, showing a network strueture 
optimised tor the sine tUnetion problem 

for program development, and NeuroGENESYS' user interface features 
would not have been possible without it, but the performance penalty has 
been severe (relative to machines with floating point hardware). 

• The genetic algorithm is an inherently parallel optimization procedure, a 
feature we soon hope to take advantage of. We have recently implemented 
a networked version of NeuroGENESYS that will allow us to retain the 
desirable aspects of the Symbolics version and yet achieve substantial 
speedup in execution (we expect two to three orders of magnitude): up to 
30 Apollo workstationst a VAX, and 10 Symbolics computers can now be 
evaluating different networks in parallel (Harp, Samad and Guha, 1990). 

• The current version of NeuroGENESYS employs the backpropagation 
learning rule, which is notoriously slow for many applications. However, 
faster-learning extensions of backpropagation are continually being 
developed. We have incorporated one recent extension (Samad, 1988), but 
others, especially common ones such as including a "momentum n term in 
the weight update rule (Rumelhart, Hinton and Williams, 1985), could also 
be considered. More generally, learning in neural networks is a topic of 
intensive research and it is likely that more efficient learning algorithms 
will become popular in the near future. 



Designing Application-Specific Neural Networks 453 

8~----------------------------------------------------~,~,----~ 
i i 

6 

2 

o 

Accuracy on the SINE Function • /; . 
··0- best 
- 0- average 
-+- offline 
-+- online 

."'. ' t " ,-, ,~. 
; ...... .' \ A" 

;' ~ r. 
, , i i 
; ~ ;, 
i !;, 
, !;, 

.. !; i 
.. ~; ~ 

!..i ! i ~ 
! ,. !i, 

,/ \ / ~, , . .; 
.'~ ;! i .. \ 

.' I ,-, ,. , 
i .", .• / 

i ......... ,.. 'e .... , . 
; 

10 

_ ...a. 'a-", 4.a.. -.... .,0- .... 

20 
Generation 

30 

., 
' . 
'~ 

, 

i 
I 

\ 
\ 
~ , 
I 

i 
i 
I 

t , , , , 
.. .. , 

A.. 

Figure 41 A learning curve for the Bine function problem 

., 

• The genetic algorithm is a.n active field of research itself. Improvements, 
many or which are concerned with convergence properties, are frequently 
being reported a.nd could reduce the computational requirements (or its 
application significantly. 

• The genetic algorithm is an iterative optimization procedure that, on the 
average, produces better solutions with each passing generation. Unlike 
some other optimilation techniques, userul results can be obtained during a 
run. The genetic algorithm can thus take advantage of whatever time and 
computational resources are available ror an application. 

• Just as there is no strict termination requirement for the genetic algorithm, 
there is no constraint on its initialilation. In our experimen ts, the zeroth 
generation consisted or randomly generated networks. Not surprisingly, 
almost all or these are poor perrormers. However, better better ways of 
selecting the initial population are possible. In particular, the initial popu
lation can consist or manually optimiled networks. Manual optimization of 
neural networks is currently the norm, but it leaves much or the design 
space unexplored. Our approach would allow a human application 
developer to design one or more networks that could be the starting point 
for further, more systematic optimization by the genetic algorithm. Other 
initialization approaches are also possible, such as using optimized networks 
from similar applications, or using heuristic guidelines to generate net
works. 

It should be emphasized that computational efficiency is not the only factor that 
must be considered in evaluating this (or any) approach. Others such as the 
potential for improved perrormance or neural network applications and the costs 



454 Harp, Samad and Guha 

and benefits associated with alternative approaches for designing network appli
cations are also critically important. 

6 FUTURE RESEARCH 
In addition to running further experiments, we hope in the future to develop ver
sions of NeuroGENESYS for other network models, including hybrid models that 
incorporate supervised and unsupervised learning components. 

Space restrictions have precluded a detailed description of NeuroGENESYS and 
our experiments. The interested reader is referred to (Harp, Samad, and Guha, 
1989ab, 1990). 

References 

Davis, L. (1988). Properties of a hybrid neural network-classifier system. In 
Advcuz.cu in Neura.l Information Proceuing Sydem8 1, D.S. Touretlky (Ed.). 
San Mateo: Morgan Kaufmann. 

Goldberg, D.E. (1989). Genetic Algorithm8 in Search, Optimization and Machine 
Learning. Addison-Wesley. 
Harp, S.A., T. Samad, and A. Guha (1989a). Towards the genetic synthesis of 
neural networks. Proceeding8 of the Third International Conference on Genetic 
Algorithm8, J.D. Schaffer (ed.). San Mateo: Morgan Kaufmann. 
Harp, S.A., T. Samad, and A. Guha (1989b). Genetic Synthui8 of Neura.l Net
work8. Technical Report 14852-CC-1989-2. Honeywell SSDC, 1000 Boone Ave
nue North, Golden Valley, MN 55427. 

Harp, S.A., T. Samad, and A. Guha (1990). Genetic synthesis of neural network 
architecture. In The Genetic Algorithm8 Handbook, L.D. Davis (Ed.). New 
York: Van Nostrand Reinhold. (To appear.) 

Holland, J. (1975). Adaptation in Natural and Artificial Sydem,. Ann Arbor: 
University of Michigan Press. 
Rumelhart, D.E., G.E. Hinton, and R.J. Williams (1985). Learning Interna.l 
Repruentation, by Error-Propagation, ICS Report 8506, Institute for Cognitive 
Science, UCSD, La Jolla, CA. 
Samad, T. (1988). Back-propagation is significantly faster if the expected value 
of the source unit is used for update. Neural Network8, 1, Sup. 1. 

Werbos, P. (1974). Beyond Regru8ion: New Tool8 for Prediction and AnalY8i8 
in the Behavioral Sciencu. Ph.D. Thesis, Harvard University Committee on 
Applied Mathematics, Cambridge, MA. 

Whitley, D. (1988). Applying Genetic Algorithm8 to Neural Net Learning. 
Technical Report CS-88-128, Department of Computer Science, Colorado State 
University. 


