
248 MalkofT 

A Neural Network for Real-Time Signal Processing 

Donald B. Malkoff 
General Electric / Advanced Technology Laboratories 

Moorestown Corporate Center 
Building 145-2, Route 38 
Moorestown, NJ 08057 

ABSTRACT 

This paper describes a neural network algorithm that (1) performs 
temporal pattern matching in real-time, (2) is trained on-line, with 
a single pass, (3) requires only a single template for training of each 
representative class, (4) is continuously adaptable to changes in 
background noise, (5) deals with transient signals having low signal
to-noise ratios, (6) works in the presence of non-Gaussian noise, (7) 
makes use of context dependencies and (8) outputs Bayesian proba
bility estimates. The algorithm has been adapted to the problem of 
passive sonar signal detection and classification. It runs on a Con
nection Machine and correctly classifies, within 500 ms of onset, 
signals embedded in noise and subject to considerable uncertainty. 

1 INTRODUCTION 

This paper describes a neural network algorithm, STOCHASM, that was developed 
for the purpose of real-time signal detection and classification. Of prime concern 
was capability for dealing with transient signals having low signal-to-noise ratios 
(SNR). 

The algorithm was first developed in 1986 for real-time fault detection and diagnosis 
of malfunctions in ship gas turbine propulsion systems (Malkoff, 1987). It subse
quently was adapted for passive sonar signal detection and classification. Recently, 
versions for information fusion and radar classification have been developed. 

Characteristics of the algorithm that are of particular merit include the following: 



A Neural Network for Real-Time Signal Processing 249 

• It performs well in the presence of either Gaussian or non-Gaussian noise, 
even where the noise characteristics are changing. 

• Improved classifications result from temporal pattern matching in real-time, 
and by taking advantage of input data context dependencies. 

• The network is trained on-line. Single exposures of target data require one 
pass through the network. Target templates, once formed, can be updated 
on-line. 

• Outputs consist of numerical estimates of closeness for each of the template 
classes, rather than nearest-neighbor "all-or-none" conclusions. 

• The algorithm is implemented in parallel code on a Connection Machine. 

Simulated signals, embedded in noise and subject to considerable uncertainty, are 
classified within 500 ms of onset. 

2 GENERAL OVERVIEW OF THE NETWORK 

2.1 REPRESENTATION OF THE INPUTS 

Sonar signals used for training and testing the neural network consist of pairs of 
simulated chirp signals that are superimposed and bounded by a Gaussian enve
lope. The signals are subject to random fluctuations and embedded in white noise. 
There is considerable overlapping (similarity) of the signal templates. Real data 
has recently become available for the radar domain. 

Once generated, the time series of the sonar signal is subject to special transforma
tions. The outputs of these transformations are the values which are input to the 
neural network. In addition, several higher-level signal features, for example, zero 
crossing data, may be simultaneously input to the same network, for purposes of 
information fusion. The transformations differ from those used in traditional sig
nal processing. They contribute to the real-time performance and temporal pattern 
matching capabilities of the algorithm by possessing all the following characteristics: 

• Time-Origin Independence: The sonar input signal is transformed so the 
resulting time-frequency representation is independent of the starting time 
of the transient with respect to its position within the observation window 
(Figure 1). "Observation window" refers to the most recent segment of the 
sonar time series that is currently under analysis. 

• Translation Independence: The time-frequency representation obtained 
by transforming the sonar input transient does not shift from one network 
input node to another as the transient signal moves across most of the obser
vation window (Figure 1). In other words, not only does the representation 
remain the same while the transient moves, but its position relative to specific 
network nodes also does not change. Each given node continues to receive its 



250 Malkoff 

usual kind of information about the sonar transient, despite the relative posi
tion of the transient in the window. For example, where the transform is an 
FFT, a specific input layer node will always receive the output of one specific 
frequency bin, and none other. 

Where the SNR is high, translation independence could be accomplished by 
a simple time-transformation of the representation before sending it to the 
neural network. This is not possible in conditions where the SNR is sufficiently 
low that segmentation of the transient becomes impossible using traditional 
methods such as auto-regressive analysis; it cannot be determined at what 
time the transient signal originated and where it is in the observation window . 

• The representation gains time-origin and translation .ndependence without 
sacrificing knowledge about the signal's temporal characteristics or its com
plex infrastructure. This is accomplished by using (1) the absolute value of 
the Fourier transform (with respect to time) of the spectrogram of the sonar 
input, or (2) the radar Woodward Ambiguity Function. The derivation and 
characterization of these methods for representing data is discussed in a sep
arate paper (Malkoff, 1990). 

Encoded Outputs 

Olff.ent Aspects of the TransfOtmltlon Output. must 
always enter their same 'l*lal node. of the Network 
and result In 1M same c/asslflcatlon. 

Figure 1: Despite passage of the transient, encoded data enters the same net
work input nodes (translation independence) and has the same form and output 
classification (time-origin independence) . 



A Neural Network for Real-Time Signal Processing 251 

2.2 THE NETWORK ARCHITECTURE 

Sonar data, suitably transformed, enters the network input layer. The input layer 
serves as a noise filter, or discriminator. The network has two additional layers, 
the hidden and output layers (Figure 2). Learning of target templates, as well as 
classification of unknown targets, takes place in a single "feed-forward" pass through 
these layers. Additional exposures to the same target lead to further enhancement of 
the template, if training, or refinement of the classification probabilities, if testing. 

The hidden layer deals only with data that passes through the input filter. This data 
predominantly represents a target. Some degree of context dependency evaluation 
of the data is achieved. Hidden layer data and its permutations are distributed 
and maintained intact, separate, and transparent. Because of this, credit (error) 
assignment is easily performed. 

In the output layer, evidence is accumulated, heuristically evaluated, and trans
formed into figures of merit for each possible template class. 

IINPU'f LA YEA 

I OUTPUT LAYER I 

Figure .2: STOCHASM network architecture. 

2.2.1 The Input Layer 

Each input layer node receives a succession of samples of a unique part of the sonar 
representation. This series of samples is stored in a first-in, first-out queue. 

With the arrival of each new input sample, the mean and standard deviation of 
the values in the queue are recomputed at every node. These statistical parameters 



252 Malkdf 

are used to detect and extract a signal from the background noise by computing 
a threshold for each node. Arriving input values that exceed the threshold are 
passed to the hidden layer and not entered into the queues. Passed values are 
expressed in terms of z-values (the number of standard deviations that the input 
value differs from the mean of the queued values). Hidden layer nodes receive only 
data exceeding thresholds; they are otherwise inactive. 

2.2.2 The Hidden Layer 

There are three basic types of hidden layer nodes: 

• The first type receive values from only a single input layer node; they reflect 
absolute changes in an input layer parameter. 

• The second type receive values from a pair of inputs where each of those values 
simultaneously deviates from normal in the same direction. 

• The third type receive values from a pair of inputs where each of those values 
simultaneously deviates from normal in opposite directions. 

For N data inputs, there are a total of N2 hidden layer nodes. 

Values are passed to the hidden layer only when they exceed the threshold levels 
determined by the input node queue. The hidden layer values are stored in first
in, first-out queues, like those of the input layer. If the network is in the testing 
mode, these values represent signals awaiting classification. The mean and standard 
deviation are computed for each of these queues, and used for subsequent pattern 
matching. If, instead, the network is in the training mode, the passed values and 
their statistical descriptors are stored as templates at their corresponding nodes. 

2.2.3 Pattern Matching Output Layer 

Pattern matching consists of computing Bayesian likelihoods for the undiagnosed 
input relative to each template class. The computation assumes a normal distri
bution of the values contained within the queue of each hidden layer node. The 
statistical parameters of the queue representing undiagnosed inputs are matched 
with those of each of the templates. For example, the number of standard devia
tions distance between the means of the "undiagnosed" queue and a template queue 
may be used to demarcate an area under a normal probability distribution. This 
area is then used as a weight, or measure, for their closeness of match. Note that 
this computation has a non-linear, sigmoid-shaped output. 

The weights for each template are summed across all nodes. Likelihood values 
are computed for each template. A priori data is used where available, and the 
results normalized for final outputs. The number of computations is minimal and 
done in parallel; they scale linearly with the number of templates per node. If 
more computer processing hardware were available, separate processors could be 
assigned for each template of every node, and computational time would be of 
constant complexity. 



A Neural Network for Real-Time Signal Processing 253 

3 PERFORMANCE 

The sonar version was tested against three sets of totally overlapping double chirp 
signals, the worst possible case for this algorithm. Where training and testing 
SNR's differed by a factor of anywhere from 1 to 8, 46 of 48 targets were correctly 
recognized . 

In extensive simulated testing against radar and jet engine modulation data, classi
fications were better than 95% correct down to -25 dB using the unmodified sonar 
algorithm. 

4 DISCUSSION 

Distinguishing features of this algorithm include the following capabilities: 

• Information fusion. 

• Improved classifications. 

• Real-time performance. 

• Explanation of outputs. 

4.1 INFORMATION FUSION 

In STOCHASM, normalization of the input data facilitates the comparison of sep
arate data items that are diverse in type. This is followed by the fusion, or com
bination, of all possible pairs of the set of inputs. The resulting combinations are 
transferred to the hidden layer where they are evaluated and matched with tem
plates. This allows the combining of different features derived either from the same 
sensor suite or from several different sensor suites. The latter is often one of the 
most challenging tasks in situation assessment. 

4.2 IMPROVED CLASSIFICATIONS 

4.2.1 Multiple Output Weights per Node 

In STOCHASM, each hidden layer node receives a single piece of data represent
ing some key feature extracted from the undiagnosed target signal. In contrast, 
the node has many separate output weights; one for every target template. Each 
of those output weights represents an actual correlation between the undiagnosed 
feature data and one of the individual target templates. STOCHASM optimizes 
the correlations of an unknown input with each possible class. In so doing, it also 
generates figures of merit (numerical estimates of closeness of match) for ALL the 
possible target classes, instead of a single "all-or-none" classification. 

In more popularized networks, there is only one output weight for each node. Its 
effectiveness is diluted by having to contribute to t!1e correlation between one undi
agnosed feature data and MANY different templates. In order to achieve reasonable 
classifications, an extra set of input connection weights is employed. The connection 



254 MalkofT 

weights provide a somewhat watered-down numerical estimate of the contribution 
of their particular input data feature to the correct classification, ON THE A VER
AGE, of targets representing all possible classes. They employ iterative procedures 
to compute values for those weights, which prevents real-time training and gener
ates sub-optimal correlations. Moreover, because all of this results in only a single 
output for each hidden layer node, another set of connection weights between the 
hidden layer node and each node of the output layer is required to complete the 
classification process. Since these tend to be fully connected layers, the number of 
weights and computations is prohibitively large. 

4.2.2 Avoidance of Nearest-Neighbor Techniques 

Some popular networks are sensitive to initial conditions. The determination of 
the final values of their weights is influenced by the initial values assigned to them. 
These networks require that, before the onset of training, the values of weights 
be randomly assigned. Moreover, the classification outcomes of these networks is 
often altered by changing the order in which training samples are submitted to the 
network. Networks of this type may be unable to express their conclusions in figures 
of merit for all possible classes. When inputs to the network share characteristics 
of more than one target class, these networks tend to gravitate to the classification 
that initially most closely resembles the input, for an "all-or-none" classification. 
STOCHASM has none of these drawbacks 

4.2.3 Noisy Data 

The algorithm handles SNR's of lower-than-one and situations where training and 
testing SNR's differ. Segmentation of one dimensional patterns buried in noise is 
done automatically. Even the noise itself can be classified. The algorithm can adapt 
on-line to changing background noise patterns. 

4.3 REAL-TIME PERFORMANCE 

There is no need for back-propagation/ gradient-descent methods to set the weights 
during training. Therefore, no iterations or recursions are required. Only a single 
feed-forward pass of data through the network is needed for either training or clas
sification. Since the number of nodes, connections, layers, and weights is relatively 
small, and the algorithm is implemented in parallel, the compute time is fast enough 
to keep up with real-time in most application domains. 

4.4 EXPLANATION OF OUTPUTS 

There is strict separation of target classification evidence in the nodes of this net
work. In addition, the evidence is maintained so that positive and negative corre
lation data is separate and easily accessable. This enables improved credit (error) 
assignment that leads to more effective classifications and the potential for making 
available to the operator real-time explanations of program behavior. 



A Neural Network for Real-Time Signal Processing 255 

4.5 FUTURE DIRECTIONS 

Previous versions of the algorithm dynamically created, destroyed, or re-arranged 
nodes and their linkages to optimize the network, minimize computations, and elim
inate unnecessary inputs. This algorithm also employed a multi-level hierarchical 
control system. The control system, on-line and in real-time, adjusted sampling 
rates and queue lengths, governing when the background noise template is permit
ted to adapt to current noise inputs, and the rate at which it does so. Future versions 
of the Connection Machine version will be able to effect the same procedures. 

Efforts are now underway to: 

1. Improve the temporal pattern matching capabilities. 

2. Provide better heuristics for the computation of final figures of merit from the 
massive amount of positive and negative correlation data resident within the 
hidden layer nodes. 

3. Adapt the algorithm to radar domains where time and spatial warping prob
lems are prominent. 

4. Simulate more realistic and complex sonar transients, with the expectation 
the algorithm will perform better on those targets. 

5. Apply the algorithm to information fusion tasks. 

References 

Malkoff, D.B., "The Application of Artificial Intelligence to the Handling of Real
Time Sensor Based Fault Detection and Diagnosis," Proceedings of the Eighth Ship 
Control Systems Symposium, Volume 3, Ministry of Defence, The Hague, pp 264-
276. Also presented at the Hague, Netherlands, October 8, 1987. 

Malkoff, D.B., "A Framework for Real-Time Fault Detection and Diagnosis Using 
Temporal Data," The International Journal for Artificial Intelligence in Engineering, 
Volume 2, No.2, pp 97-111, April 1987. 

Malkoff, D.B. and L. Cohen, "A Neural Network Approach to the Detection Problem 
Using Joint Time-Frequency Distributions," Proceedings of the IEEE 1990 Interna
tional Conference on Acoustics, Speech, and Signal Processing, Albuquerque, New 
Mexico, April 1990 (to appear). 





PART III: 
VISION 


