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ABSTRACT 

In associative reinforcement learning, an environment generates input 
vectors, a learning system generates possible output vectors, and a re
inforcement function computes feedback signals from the input-output 
pairs. The task is to discover and remember input-output pairs that 
generate rewards. Especially difficult cases occur when rewards are 
rare, since the expected time for any algorithm can grow exponentially 
with the size of the problem. Nonetheless, if a reinforcement function 
possesses regularities, and a learning algorithm exploits them, learning 
time can be reduced below that of non-generalizing algorithms. This 
paper describes a neural network algorithm called complementary re
inforcement back-propagation (CRBP), and reports simulation results 
on problems designed to offer differing opportunities for generalization. 

1 REINFORCEMENT LEARNING REQUIRES SEARCH 

Reinforcement learning (Sutton, 1984; Barto & Anandan, 1985; Ackley, 1988; Allen, 
1989) requires more from a learner than does the more familiar supervised learning 
paradigm. Supervised learning supplies the correct answers to the learner, whereas 
reinforcement learning requires the learner to discover the correct outputs before 
they can be stored. The reinforcement paradigm divides neatly into search and 
learning aspects: When rewarded the system makes internal adjustments to learn 
the discovered input-output pair; when punished the system makes internal adjust
ments to search elsewhere. 
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1.1 MAKING REINFORCEMENT INTO ERROR 

Following work by Anderson (1986) and Williams (1988), we extend the backprop
agation algorithm to associative reinforcement learning. Start with a "garden va
riety" backpropagation network: A vector i of n binary input units propagates 
through zero or more layers of hidden units, ultimately reaching a vector 8 of m 
sigmoid units, each taking continuous values in the range (0,1). Interpret each 8j 

as the probability that an associated random bit OJ takes on value 1. Let us call 
the continuous, deterministic vector 8 the search vector to distinguish it from the 
stochastic binary output vector o. 

Given an input vector, we forward propagate to produce a search vector 8, and 
then perform m independent Bernoulli trials to produce an output vector o. The 
i - 0 pair is evaluated by the reinforcement function and reward or punishment 
ensues. Suppose reward occurs. We therefore want to make 0 more likely given i. 
Backpropagation will do just that if we take 0 as the desired target to produce an 
error vector (0 - 8) and adjust weights normally. 

Now suppose punishment occurs, indicating 0 does not correspond with i. By choice 
of error vector, backpropagation allows us to push the search vector in any direction; 
which way should we go? In absence of problem-specific information, we cannot pick 
an appropriate direction with certainty. Any decision will involve assumptions. A 
very minimal "don't be like 0" assumption-employed in Anderson (1986), Williams 
(1988), and Ackley (1989)-pushes s directly away from 0 by taking (8 - 0) as the 
error vector. A slightly stronger "be like not-o" assumption-employed in Barto & 
Anandan (1985) and Ackley (1987)-pushes s directly toward the complement of 0 

by taking ((1 - 0) - 8) as the error vector. Although the two approaches always 
agree on the signs of the error terms, they differ in magnitudes. In this work, 
we explore the second possibility, embodied in an algorithm called complementary 
reinforcement back-propagation ( CRBP). 

Figure 1 summarizes the CRBP algorithm. The algorithm in the figure reflects three 
modifications to the basic approach just sketched. First, in step 2, instead of using 
the 8j'S directly as probabilities, we found it advantageous to "stretch" the values 
using a parameter v. When v < 1, it is not necessary for the 8i'S to reach zero or 
one to produce a deterministic output. Second, in step 6, we found it important 
to use a smaller learning rate for punishment compared to reward. Third, consider 
step 7: Another forward propagation is performed, another stochastic binary out
put vector 0* is generated (using the procedure from step 2), and 0* is compared 
to o. If they are identical and punishment occurred, or if they are different and 
reward occurred, then another error vector is generated and another weight update 
is performed. This loop continues until a different output is generated (in the case 
of failure) or until the original output is regenerated (in the case of success). This 
modification improved performance significantly, and added only a small percentage 
to the total number of weight updates performed. 
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O. Build a back propagation network with input dimensionality n and output 
dimensionality m. Let t = 0 and te = O. 

1. Pick random i E 2n and forward propagate to produce a/s. 
2. Generate a binary output vector o. Given a uniform random variable ~ E [0,1] 

and parameter 0 < v < 1, 

OJ = {1, if(sj - !)/v+! ~ ~j 
0, otherwise. 

3. Compute reinforcement r = f(i,o). Increment t. If r < 0, let te = t. 
4. Generate output errors ej. If r > 0, let tj = OJ, otherwise let tj = 1- OJ. Let 

ej = (tj - sj)sj(l- Sj). 

5. Backpropagate errors. 
6. Update weights. 1:::..Wjk = 1]ekSj, using 1] = 1]+ if r ~ 0, and 1] = 1]- otherwise, 

with parameters 1]+,1]- > o. 
7. Forward propagate again to produce new Sj's. Generate temporary output 

vector 0*. If (r > 0 and 0* #- 0) or (r < 0 and 0* = 0), go to 4. 
8. If te ~ t, exit returning te, else go to 1. 

Figure 1: Complementary Reinforcement Back Propagation-CRBP 

2 ON-LINE GENERALIZATION 

When there are many possible outputs and correct pairings are rare, the compu
tational cost associated with the search for the correct answers can be profound. 
The search for correct pairings will be accelerated if the search strategy can effec
tively generalize the reinforcement received on one input to others. The speed of 
an algorithm on a given problem relative to non-generalizing algorithms provides a 
measure of generalization that we call on-line generalization. 

O. Let z be an array of length 2n. Set the z[i] to random numbers from 0 to 
2m - 1. Let t = te = O. 

1. Pick a random input i E 2n. 
2. Compute reinforcement r = f(i, z[i]). Increment t. 
3. If r < 0 let z[i] = (z[i] + 1) mod 2m , and let te = t. 
4. If te <t:: t exit returning te, else go to 1. 

Figure 2: The Table Lookup Reference Algorithm Tref(f, n, m) 

Consider the table-lookup algorithm Tref(f, n, m) summarized in Figure 2. In this 
algorithm, a separate storage location is used for each possible input. This prevents 
the memorization of one i - 0 pair from interfering with any other. Similarly, 
the selection of a candidate output vector depends only on the slot of the table 
corresponding to the given input. The learning speed of Tref depends only on the 
input and output dimensionalities and the number of correct outputs associated 
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with each input. When a problem possesses n input bits and n output bits, and 
there is only one correct output vector for each input vector, Tre{ runs in about 4n 
time (counting each input-output judgment as one.) In such cases one expects to 
take at least 2n - 1 just to find one correct i - 0 pair, so exponential time cannot be 
avoided without a priori information. How does a generalizing algorithm such as 
CRBP compare to Trer? 

3 SIMULATIONS ON SCALABLE PROBLEMS 

We have tested CRBP on several simple problems designed to offer varying degrees 
and types of generalization. In all of the simulations in this section, the following 
details apply: Input and output bit counts are equal (n). Parameters are dependent 
on n but independent of the reinforcement function f. '7+ is hand-picked for each 
n,l 11- = 11+/10 and II = 0.5. All data points are medians of five runs. The stopping 
criterion te ~ t is interpreted as te +max(2000, 2n+l) < t. The fit lines in the figures 
are least squares solutions to a x bn , to two significant digits. 

n 
As a notational convenience, let c = ~ E ij - the fraction of ones in the input. 

;=1 

3.1 n-MAJORlTY 

Consider this "majority rules" problem: [if c > ~ then 0 = In else 0 = on]. The i-o 
mapping is many-to-l. This problem provides an opportunity for what Anderson 
(1986) called "output generalization": since there are only two correct output states, 
every pair of output bits are completely correlated in the cases when reward occurs. 
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Figure 3: The n-majority problem 

x Table 
D CRBP n-n-n 
+ CRBP n-n 

Figure 3 displays the simulation results. Note that although Trer is faster than 
CRBP at small values of n, CRBP's slower growth rate (1.6n vs 4.2n ) allows it to 
cross over and begin outperforming Trer at about 6 bits. Note also--in violation of 

1 For n = 1 to 12. we used '1+ = {2.000. 1.550. 1.130.0.979.0.783.0.709.0.623.0.525.0.280. 
0.219. 0.170. 0.121}. 
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some conventional wisdom-that although n-majority is a linearly separable prob
lem, the performance of CRBP with hidden units is better than without. Hidden 
units can be helpful--even on linearly separable problems-when there are oppor
tunities for output generalization. 

3.2 n-COPY AND THE 2k -ATTRACTORS FAMILY 

As a second example, consider the n-copy problem: [0 = i]. The i-o mapping is now 
1-1, and the values of output bits in rewarding states are completely uncorrelated, 
but the value of each output bit is completely correlated with the value of the 
corresponding input bit. Figure 4 displays the simulation results. Once again, at 
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Figure 4: The n-copy problem 

x Table 
D CRBP n-n-n 
+ CRBP n-n 

low values of n, Trer is faster, but CRBP rapidly overtakes Trer as n increases. In 
n-copy, unlike n-majority, CRBP performs better without hidden units. 

The n-majority and n-copy problems are extreme cases of a spectrum. n-majority 
can be viewed as a "2-attractors" problem in that there are only two correct 
outputs-all zeros and all ones-and the correct output is the one that i is closer 
to in hamming distance. By dividing the input and output bits into two groups 
and performing the majority function independently on each group, one generates 
a "4-aUractors" problem. In general, by dividing the input and output bits into 
1 ~ Ie ~ n groups, one generates a "2i:-attractors" problem. When Ie = 1, n
majority results, and when Ie = n, n-copy results. 

Figure 5 displays simulation results on the n = 8-bit problems generated when Ie is 
varied from 1 to n. The advantage of hidden units for low values of Ie is evident, 
as is the advantage of "shortcut connections" (direct input-to-output weights) for 
larger values of Ie. Note also that combination of both hidden units and shortcut 
connections performs better than either alone. 
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Figure 5: The 21:-attractors family at n = 8 

3.3 n-EXCLUDED MIDDLE 

All of the functions considered so far have been linearly separable. Consider this 
"folded majority" function: [if i < c < i then 0 = on else 0 = In]. Now, like 
n-majority, there are only two rewarding output states, but the determination of 
which output state is correct is not linearly separable in the input space. When 
n = 2, the n-excluded middle problem yields the EQV (i.e., the complement of 
XOR) function, but whereas functions such as n-parity [if nc is even then 0 = on 
else 0 = In] get more non-linear with increasing n, n-excluded middle does not. 
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Figure 6: The n-excluded middle problem 

Figure 6 displays the simulation results. CRBP is slowed somewhat compared to 
the linearly separable problems, yielding a higher "cross over point" of about 8 bits. 
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4 STRUCTURING DEGENERATE OUTPUT SPACES 

All of the scaling problems in the previous section are designed so that there is 
a single correct output for each possible input. This allows for difficult problems 
even at small sizes, but it rules out an important aspect of generalizing algorithms 
for associative reinforcement learning: If there are multiple satisfactory outputs 
for given inputs, a generalizing algorithm may impose structure on the mapping it 
produces. 

We have two demonstrations of this effect, "Bit Count" and "Inverse Arithmetic." 
The Bit Count problem simply states that the number of I-bits in the output should 
equal the number of I-bits in the input. When n = 9, Tref rapidly finds solutions 
involving hundreds of different output patterns. CRBP is slower--especially with 
relatively few hidden units-but it regularly finds solutions involving just 10 output 
patterns that form a sequence from 09 to 19 with one bit changing per step. 

0+Ox4=0 0+2x4=8 0+4 x 4 = 16 0+6 x 4 = 24 
1+0x4=1 1+2x4=9 1+4x4=17 1 + 6 x 4 = 25 
2+0x4=2 2 + 2 x 4 = 10 2 + 4 x 4 = 18 2 + 6 x 4 = 26 
3+0x4=3 3+2x4=11 3 +4 x 4 = 19 3 + 6 x 4 = 27 

4+0x4=4 4+ 2 x 4 = 12 4+4 x 4 = 20 4 + 6 x 4 = 28 
5+0x4=5 5 + 2 x 4 = 13 5 + 4 x 4 = 21 5 + 6 x 4 = 29 
6+0x4=6 6 + 2 x 4 = 14 6 + 4 x 4 = 22 6 + 6 x 4 = 30 
7+0x4=7 7 + 2 x 4 = 15 7 + 4 x 4 = 23 7 + 6 x 4 = 31 

2+2-4=0 2+2+4=8 6+ 6 + 4 = 16 0+6 x 4 = 24 
3+2-4=1 3+2+4=9 7+6+4= 17 1 + 6 x 4 = 25 
2+2+4=2 2 + 2 x 4 = 10 2 + 4 x 4 = 18 2 + 6 x 4 = 26 
3+2+4=3 3+2x4=1l 3 + 4 x 4 = 19 3 + 6 x 4 = 27 

6+2-4=4 6 + 2+ 4 = 12 4 x 4 + 4 = 20 4 + 6 x 4 = 28 
7+2-4=5 7 + 2 + 4 = 13 5 + 4 x 4 = 21 5 + 6 x 4 = 29 
6+2+4=6 6 + 2 x 4 = 14 6 + 4 x 4 = 22 6 + 6 x 4 = 30 
7+2-.;-4=7 7 + 2 x 4 = 15 7 +4 x 4 = 23 7 + 6 x 4 = 31 

Figure 7: Sample CRBP solutions to Inverse Arithmetic 

The Inverse Arithmetic problem can be summarized as follows: Given i E 25 , find 
:1:, y, z E 23 and 0, <> E {+(OO)' -(01)' X (10)' +(11)} such that :I: oy<>z = i. In all there are 
13 bits of output, interpreted as three 3-bit binary numbers and two 2-bit operators, 
and the task is to pick an output that evaluates to the given 5-bit binary input 
under the usual rules: operator precedence, left-right evaluation, integer division, 
and division by zero fails. 

As shown in Figure 7, CRBP sometimes solves this problem essentially by discover
ing positional notation, and sometimes produces less-globally structured solutions, 
particularly as outputs for lower-valued i's, which have a wider range of solutions. 
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5 CONCLUSIONS 

Some basic concepts of supervised learning appear in different guises when the 
paradigm of reinforcement learning is applied to large output spaces. Rather than 
a "learning phase" followed by a "generalization test," in reinforcement learning 
the search problem is a generalization test, performed simultaneously with learning. 
Information is put to work as soon as it is acquired. 

The problem of of "overfitting" or "learning the noise" seems to be less of an issue, 
since learning stops automatically when consistent success is reached. In exper
iments not reported here we gradually increased the number of hidden units on 
the 8-bit copy problem from 8 to 25 without observing the performance decline 
associated with "too many free parameters." 

The 2k-attractors (and 2k-folds-generalizing Excluded Middle) families provide 
a starter set of sample problems with easily understood and distinctly different 
extreme cases. 

In degenerate output spaces, generalization decisions can be seen directly in the 
discovered mapping. Network analysis is not required to "see how the net does it." 

The possibility of ultimately generating useful new knowledge via reinforcement 
learning algorithms cannot be ruled out. 
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