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What follows extends some of our results of [1] on learning from ex­
amples in layered feed-forward networks of linear units. In particu­
lar we examine what happens when the ntunber of layers is large or 
when the connectivity between layers is local and investigate some 
of the properties of an autoassociative algorithm. Notation will be 
as in [1] where additional motivations and references can be found. 
It is usual to criticize linear networks because "linear functions do 
not compute" and because several layers can always be reduced to 
one by the proper multiplication of matrices. However this is not the 
point of view adopted here. It is assumed that the architecture of the 
network is given (and could perhaps depend on external constraints) 
and the purpose is to understand what happens during the learning 
phase, what strategies are adopted by a synaptic weights modifying 
algorithm, ... [see also Cottrell et al. (1988) for an example of an ap­
plication and the work of Linsker (1988) on the emergence of feature 
detecting units in linear networks}. 

Consider first a two layer network with n input units, n output units 
and p hidden units (p < n). Let (Xl, YI), ... , (XT, YT) be the set of 
centered input-output training patterns. The problem is then to find 
two matrices of weights A and B minimizing the error function E: 

E(A, B) = L IIYt - ABXtIl2. (1) 
l<t<T 
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Let ~x x, ~XY, ~yy, ~y x denote the usual covariance matrices. The 
main result of [1] is a description of the landscape of E, characerised 
by a multiplicity of saddle points and an absence of local minima. 
More precisely, the following four facts are true. 

Fact 1: For any fixed n x p matrix A the function E(A, B) is convex 
in the coefficients of B and attains its minimum for any B satisfying 
the equation 

A'AB~xx = A/~yX. (2) 

If in addition ~x X is invertible and A is of full rank p, then E is 
strictly convex and has a unique minimum reached when 

(3) 

Fact 2: For any fixed p x n matrix B the function E(A, B) is convex 
in the coefficients of A and attains its minimum for any A satisfying 
the equation 

AB~xxB' = ~YXB'. (4) 

If in addition ~xx is invertible and B is of full rank p, then E is 
strictly convex and has a unique minimum reached when 

(5) 

Fact 3: Assume that ~x X is invertible. If two matrices A and B 
define a critical point of E (i.e. a point where 8E / 8aij = 8E /8bij = 
0) then the global map W = AB is of the form 

(6) 

where P A denotes the matrix of the orthogonal projection onto the 
subspace spanned by the columns of A and A satisfies 

(7) 



Linear Learning: Landscapes and Algorithms 67 

with ~ = ~y X ~x~~XY. If A is of full rank p, then A and B define 

a critical point of E if and only if A satisties (7) and B = R(A), or 
equivalently if and only if A and W satisfy (6) and (7). Notice that 
in (6), the matrix ~y X ~x~ is the slope matrix for the ordinary least 
square regression of Y on X. 

Fact 4: Assume that ~ is full rank with n distinct eigenvalues At > 
... > An. If I = {i t , ... ,ip}(l < it < ... < ip < n) is any or­
dered p-index set, let Uz = [Uit , ••• , Uip ] denote the matrix formed 
by the orthononnal eigenvectors of ~ associated with the eigenvalues 
Ail' ... , Aip • Then two full rank matrices A and B define a critical 
point of E if and only if there exist an ordered p-index set I and an 
invertible p x p matrix C such that 

A=UzC 

For such a critical point we have 

E(A,B) = tr(~yy) - L Ai. 
iEZ 

(8) 

(9) 

(10) 

(11 ) 

Therefore a critical point of W of rank p is always the product of the 
ordinary least squares regression matrix followed by an orthogonal 
projection onto the subspace spanned by p eigenvectors of~. The map 
W associated with the index set {I, 2, ... ,p} is the unique local and 
global minimum of E. The remaining (;) -1 p-index sets correspond 

to saddle points. All additional critical points defined by matrices 
A and B which are not of full rank are also saddle points and can 
be characerized in terms of orthogonal projections onto subspaces 
spanned by q eigenvectors with q < p. 
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Deep Networks 

Consider now the case of a deep network with a first layer of n input 
units, an (m + 1 )-th layer of n output units and m - 1 hidden layers 
with an error function given by 

E(AI, ... ,An)= L IIYt-AIAl ... AmXtll2. (12) 
l<t<T 

It is worth noticing that, as in fact 1 and 2 above, if we fix any m-1 
of the m matrices AI, ... , Am then E is convex in the remaining matrix 
of connection weights. Let p (p < n) denote the ntunber of units in 
the smallest layer of the network (several hidden layers may have p 
units). In other words the network has a bottleneck of size p. Let i 
be the index of the corresponding layer and set 

A = A I A2 ... Am-i+1 

B = Am-i+2 ... Am 
(13) 

When we let AI, ... , Am vary, the only restriction they impose on A 
and B is that they be of rank at most p. Conversely, any two ma­
trices A and B of rank at most p can always be decomposed (and 
in many ways) in products of the form of (13). It results that any 
local minima of the error function of the deep network should yield a 
local minima for the corresponding "collapsed" .three layers network 
induced by (13) and vice versa. Therefore E(AI , ... , Am) does not 
have any local minima and the global minimal map W· = AIA2 ... Am 
is unique and given by (10) with index set {I, 2, ... , p}. Notice that 
of course there is a large number of ways of decomposing W· into 
a product of the form A I A2 ... Am . Also a saddle point of the error 
function E(A, B) does not necessarily generate a saddle point of the 
corresponding E (A I , ... , Am) for the expressions corresponding to the 
two gradients are very different. 
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Forced Connections. Local Connectivity 

Assume now an error function of the form 

E(A) = L IIYt - AXt[[2 
l~t~T 

(14) 

for a two layers network but where the value of some of the entries 
of A may be externally prescribed. In particular this includes the 
case of local connectivity described by relations of the form aij = 0 
for any output unit i and any input unit j which are not connected. 
Clearly the error function E(A) is convex in A. Every constraint of 
the form aij =cst defines an hyperplane in the space of all possible A. 
The intersection of all these constraints is therefore a convex set. Thus 
minimizing E under the given constraints is still a convex optimization 
problem and so there are no local minima. It should be noticed that, 
in the case of a network with even only three constrained layers with 
two matrices A and B and a set of constraints of the form aij =cst 
on A and bk1 =cst for B, the set of admissible matrices of the form 
W = AB is, in general, not convex anymore. It is not unreasonable 
to conjecture that local minima may then arise, though this question 
needs to be investigated in greater detail. 

Algorithmic Aspects 

One of the nice features of the error landscapes described so far is 
the absence of local minima and the existence, up to equivalence, 
of a unique global minimum which can be understood in terms of 
principal component analysis and least square regression. However 
the landscapes are also characterized by a large number of saddle 
points which could constitute a problem for a simple gradient descent 
algorithm during the learning phase. The proof in [1] shows that 
the lower is the E value corresponding to a saddle point, the more 
difficult it is to escape from it because of a reduction in the possible 
number of directions of escape (see also [Chauvin, 1989] in a context of 
Hebbian learning). To assert how relevant these issues are for practical 
implementations requires further simulation experiments. On a more 
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speculative side, it remains also to be seen whether, in a problem 
of large size, the number and spacing of saddle points encountered 
during the first stages of a descent process could not be used to "get 
a feeling" for the type of terrain being descented and as a result to 
adjust the pace (i. e. the learning rate). 

We now turn to a simple algorithm for the auto-associative case in a 
three layers network, i. e. the case where the presence of a teacher 
can be avoided by setting Yt = Xt and thereby trying to achieve a 
compression of the input data in the hidden layer. This technique 
is related to principal component analysis, as described in [1]. If 
Yt = Xt, it is easy to see from equations (8) and (9) that, if we take 
the matrix C to be the identity, then at the optimum the matrices 
A and B are transpose of each other. This heuristically suggests a 
possible fast algorithm for auto-association, where at each iteration a 
gradient descent step is applied only to one of the connection matrices 
while the other is updated in a symmetric fashion using transposition 
and avoiding to back-propagate the error in one of the layers (see 
[Williams, 1985] for a similar idea). More formally, the algorithm 
could be concisely described by 

A(O) = random 

B(O) = A'(O) 

8E 
A(k+l)=A(k)-11 8A 

B(k+l)=A'(k+l) 

(15) 

Obviously a similar algorithm can be obtained by setting B(k + 1) = 
B(k) -118E/8B and A(k + 1) = B'(k + 1). It may actually even be 
bet ter to alternate the gradient step, one iteration with respect to A 
and one iteration with respect to B. 
A simple calculation shows that (15) can be rewritten as 

A(k + 1) = A(k) + 11(1 - W(k))~xxA(k) 

B(k + 1) = B(k) + 11B(k)~xx(I - W(k)) 
(16) 
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where W(k) = A(k)B(k). It is natural from what we have already 
seen to examine the behavior of this algorithm on the eigenvectors of 
~xx. Assume that u is an eigenvector of both ~xx and W(k) with 
eigenvalues ,\ and /-l( k). Then it is easy to see that u is an eigenvector 
of W(k + 1) with eigenvalue 

(17) 

For the algorithm to converge to the optimal W, /-l( k + 1) must con­
verge to 0 or 1. Thus one has to look at the iterates of the func­
tion f( x) = x[l + 7],\(1 - x)]2. This can be done in detail and 
we shall only describe the main points. First of all, f' (x) = 0 iff 
x = 0 or x = Xa = 1 + (1/7],\) or x = Xb = 1/3 + (1/37],\) and 
f"(x) = 0 iff x = Xc = 2/3 + (2/37],\) = 2Xb. For the fixed points, 
f(x) = x iff x = 0, x = 1 or x = Xd = 1 + (2/7],\). Notice also 
that f(xa) = a and f(1 + (1/7],\)) = (1 + (1/7],\)(1 - 1? Points cor­
responding to the values 0,1, X a , Xd of the x variable can readily be 
positioned on the curve of f but the relative position of Xb (and xc) 

depends on the value assumed by 7],\ with respect to 1/2. Obviously 
if J1(0) = 0,1 or Xd then J1( k) = 0,1 or Xd, if J1(0) < 0 /-l( k) ~ -00 
and if /-l( k) > Xd J1( k) ~ +00. Therefore the algorithm can converge 
only for a < /-leO) < Xd. When the learning rate is too large, i. e. 
when 7],\ > 1/2 then even if /-leO) is in the interval (0, Xd) one can see 
that the algorithm does not converge and may even exhibit complex 
oscillatory behavior. However when 7],\ < 1/2, if 0 < J1(0) < Xa then 
J1( k) ~ 1, if /-leO) = Xa then /-l( k) = a and if Xa < J1(0) < Xd then 
/-l(k) ~ 1. 

In conclusion, we see that if the algorithm is to be tested, the 
learning rate should be chosen so that it does not exceed 1/2,\, where 
,\ is the largest eigenvalue of ~xx. Even more so than back propaga­
tion, it can encounter problems in the proximity of saddle points. 
Once a non-principal eigenvector of ~xx is learnt, the algorithm 
rapidly incorporates a projection along that direction which cannot 
be escaped at later stages. Simulations are required to examine the 
effects of "noisy gradients" (computed after the presentation of only 
a few training examples), multiple starting points, variable learning 
rates, momentum terms, and so forth. 
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We have previously developed a simple mathemati­
cal model for formation of ocular dominance columns in 
mammalian visual cortex. The model provides a com­
mon framework in which a variety of activity-dependent 
biological machanisms can be studied. Analytic and com­
putational results together now reveal the following: if 
inputs specific to each eye are locally correlated in their 
firing, and are not anticorrelated within an arbor radius, 
monocular cells will robustly form and be organized by 
intra-cortical interactions into columns. Broader corre­
lations withln each eye, or anti-correlations between the 
eyes, create a more purely monocular cortex; positive cor­
relation over an arbor radius yields an almost perfectly 
monocular cortex. Most features of the model can be un­
derstood analytically through decomposition into eigen­
functions and linear stability analysis. This allows predic­
tion of the widths of the columns and other features from 
measurable biological parameters. 

INTRODUCTION 

In the developing visual system in many mammalian species, there is initially a uni­
form, overlapping innervation of layer 4 of the visual cortex by inputs representing 
the two eyes. Subsequently, these inputs segregate into patches or stripes that are 
largely or exclusively innervated by inputs serving a single eye, known as ocular 
dominance patches. The ocular dominance patches are on a small scale compared 
to the map of the visual world, so that the initially continuous map becomes two 
interdigitated maps, one representing each eye. These patches, together with the 
layers of cortex above and below layer 4, whose responses are dominated by the 
eye innervating the corresponding layer 4 patch, are known as ocular dominance 
columns. 
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The discoveries of this system of ocular dominance and many of the basic features 
of its development were made by Hubel and Wiesel in a series of pioneering studies 
in the 1960s and 1970s (e.g. Wiesel and Hubel (1965), Hubel, Wiesel and LeVay 
(1977)). A recent brief review is in Miller and Stryker (1989). 

The segregation of patches depends on local correlations of neural activity that are 
very much greater within neighboring cells in each eye than between the two eyes. 
Forcing the eyes to fire synchronously prevents segregation, while forcing them to 
fire more asynchronously than normally causes a more complete segregation than 
normal. The segregation also depends on the activity of cortical cells. Normally, if 
one eye is closed in a young kitten during a critical period for developmental plas­
ticity ("monocular deprivation"), the more active, open eye comes to dominantly or 
exclusively drive most cortical cells, and the inputs and influence of the closed eye 
become largely confined to small islands of cortex. However, when cortical cells are 
inhibited from firing, the opposite is the case: the less active eye becomes dominant, 
suggesting that it is the correlation between pre- and post-synaptic activation that 
is critical to synaptic strengthening. 

We have developed and analyzed a simple mathematical model for formation of 
ocular dominance patches in mammalian visual cortex, which we briefly review 
here (Miller, Keller, and Stryker, 1986). The model provides a common framework 
in which a variety of activity-dependent biological models, including Hebb synapses 
and activity-dependent release and uptake of trophic factors, can be studied. The 
equations are similar to those developed by Linsker (1986) to study the development 
of orientation selectivity in visual cortex. We have now extended our analysis and 
also undertaken extensive simulations to achieve a more complete understanding of 
the model. Many results have appeared, or will appear, in more detail elsewhere 
(Miller, Keller and Stryker, 1989; Miller and Stryker, 1989; Miller, 1989). 

EQUATIONS 

Consider inputs carrying information from two eyes and co-innervating a single cor­
tical sheet. Let SL(x, 5, t) and SR(x, 5, t), respectively, be the left eye and right 
eye synaptic weight from eye-coordinate 5 to cortical coordinate x at time t. Con­
sideration of simple activity-dependent models of synaptic plasticity, such as Hebb 
synapses or activity-dependent release and uptake of trophic or modification factors, 
leads to equations for the time development of SL and SR: 

8t S J (x,5,t) = AA(x-5) L I(x-y)OJK(5-P)SK(y, p,t)_-ySK(x, 5,t)-e. (1) 
f/,{l,K 

J, K are variables which each may take on the values L, R. A(x-5) is a connectivity 
function, giving the number of synapses from 5 to x (we assume an identity mapping 
from eye coordinates to cortical coordinates). OJ K (5 - P) measures the correlation 
in firing of inputs from eyes J and K when the inputs are separated by the distance 
5 - p. I(x - y) is a model-dependent spread of influence across cortex, telling how 
two synapses which fire synchronously, separated by the distance x-y, will influence 
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one another's growth. This influence incorporates lateral synaptic interconnections 
in the case of Hebb synapses (for linear activation, 1= (1- B)-l, where 1 is 
the identity matrix and B is the matrix of cortico-cortical synaptic weights), and 
incorporates the effects of diffusion of trophic or modification factors in models 
involving such factors. .A, "1 and € are constants. Constraints to conserve or limit 
the total synaptic strength supported by a single cell, and nonlinearities to keep left­
and right-eye synaptic weights positive and less than some maximum, are added. 

Subtracting the equation for SR from that for SL yields a model equation for the 
difference, SD(x, 0, t) = SL(x, 0, t) - SR(x, 0, t): 

8t SD(x, 0, t) = .AA(x - 0) L I(x - y)eD(o - p)SD(y, p, t) - "1SD(x, 0, t). (2) 

".Il 
Here, CD = eSameEye _ eOppEye, where eSameEye = eLL = eRR, eOppEye = 

e LR = e RL , and we have assumed statistical equality of the two eyes. 

SIMULATIONS 

The development of equation (1) was studied in simulations using three 25 x 25 
grids for the two input layers, one representing each eye, and a single cortical layer. 
Each input cell connects to a 7 x 7 square arbor of cortical cells centered on the 
corresponding grid point (A(x) = 1 on the square of ±3 grid points, 0 otherwise). 
Initial synaptic weights are randomly assigned from a uniform distribution between 
0.8 and 1.2. Synapses are allowed to decrease to 0 or increase to a weight of 8. 
Synaptic strength over each cortical cell is conserved by subtracting after each 
iteration from each active synapse the average change in synaptic strength on that 
cortical cell. Periodic boundary conditions on the three grids are used. 

A typical time development of the cortical pattern of ocular dominance is shown 
in figure 1. For this simulation, correlations within each eye decrease with distance 
to zero over 4-5 grid points (circularly symmetric gaussian with parameter 2.8 
grid points). There are no opposite-eye correlations. The cortical interaction func­
tion is a "Mexican hat" function excitatory between nearest neighbors and weakly 
inhibitory more distantly (I(x) = exp((-1;1)2) - ~exp((;l:1)2), .A1 = 0.93.) Indi­
vidual cortical cell receptive fields refine in size and become monocular (innervated 
exclusively by a single eye), while individual input arbors refine in size and become 
confined to alternating cortical stripes (not shown). 

Dependence of these results on the correlation function is shown in figure 2. Wider 
ranging correlations within each eye, or addition of opposite-eye anticorrelations, 
increase the monocularity of cortex. Same-eye anticorrelations decrease monocu­
larity, and if significant within an arbor radius (i.e. within ±3 grid points for the 
7 x 7 square arbors) tend to destory the monocular organization, as seen at the 
lower right. Other simulations (not shown) indicate that same-eye correlation over 
nearest neighbors is sufficient to give the periodic organization of ocular dominance, 
while correlation over an arbor radius gives an essentially fully monocular cortex. 
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T=O T=10 T=20 
R 

T=30 T=40 T=80 

L 
Figure 1. Time development of cortical ocular dominance. Results shown after 0, 
10, 20,30, 40, 80 iterations. Each pixel represents ocular dominance (Ea SD(x, a)) 
of a single cortical cell. 40 X 40 pixels are shown, repeating 15 columns and rows of 
the cortical grid, to reveal the pattern across the periodic boundary conditions. 

Simulation of time development with varying cortical interaction and arbor func­
tions shows complete agreement with the analytical results presented below. The 
model also reproduces the experimental effects of monocular deprivation, including 
the presence of a critical developmental period for this effect. 

EIGENFUNCTION ANALYSIS 

Consider an initial condition for which SD ~ 0, and near which equation (2) 
linearizes some more complex, nonlinear biological reality. SD = 0 is a time­
independent solution of equation (2). Is this solution stable to small perturbations, 
so that equality of the two eyes will be restored after perturbation, or is it unstable, 
so that a pattern of ocular dominance will grow? If it is unstable, which pattern 
will initially grow the fastest? These are inherently linear questions: they depend 
only on the behavior of the equations when SD is small, so that nonlinear terms 
are negligible. 

To solve this problem, we find the characteristic, independently growing modes of 
equation (2). These are the eigenfunctions of the operator on the right side of that 
equation. Each mode grows exponentially with growth rate given by its eigenvalue. 
If any eigenvalue is positive (they are real), the corresponding mode will grow. Then 
the SD = 0 solution is unstable to perturbation. 



2.8 

1.4 

SAME-EYE 
CORRELATIONS 

Models of Ocular Dominance Column Formation 379 

+ OPP-EYE 
ANTI-CORR 
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Figure f. Cortical ocular dominance after fOO iterations for 6 choices of correlation 
functions. Top left is simulation of figure 1. Top and bottom rows correspond to 
gaussian same-eye correlations with parameter f.B and 1.4 grid points, respectively. 
Middle column shows the effect of adding weak, broadly ranging anticorrelations 
between the two eyes (gaussian with parameter 9 times larger than, and amplitude 
- ~ that oj, the same-eye correlations). Right column shows the effect of instead 
adding the anticorrelation to the same-eye correlation function. 

ANALYTICAL CHARACTERIZATION OF EIGENFUNC­
TIONS 

Change variables in equation (2) from cortex and inputs, (x, a), to cortex and re­
ceptive field, (x, r) with r = x-a. Then equation 2 becomes a convolution in the 
cortical variable. The result (assume a continuum; results on a grid are similar) 
is that eigenfunctions are of the form S~,e(x, a, t) = eimoz RFm,e(r). RFm,e is a 
characteristic receptive field, representing the variation of the eigenfunction as r 
varies while cortical location x is fixed. m is a pair of real numbers specifying a two 
dimensional wavenumber of cortical oscillation, and e is an additional index enumer­
ating RFs for a given m. The eigenfunctions can also be written eimoa ARBm..,{r) 
where ARBm..,(r) = eimor RFm..,(r). ARB is a characteristic arbor, representing 
the variation of the eigenfunction as r varies while input location a is fixed. While 
these functions are complex, one can construct real eigenfunctions from them with 
similar properties (Miller and Stryker, 1989). A monocular (real) eigenfunction is 
illustrated in figure 3. 
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CHARACTERISTIC RECEPTIVE FIELD 

I 

vvv 

CHARACTERISTIC ARBOR 
Figure 9. One of the set (identical but for rotations and reflections) of fastest­
growing eigenfunctions for the functions used in figure 1. The monocular receptive 
fields of synaptic differences SD at different cortical locations, the oscillation across 
cortez, and the corresponding arbors are illustrated. 

Modes with RFs dominated by one eye C~::II RFm.dY) -:F 0) will oscillate in domi­
nance with wavelength ~ across cortex. A monocular mode is one for which RF 
does not change sign. The oscillation of monocular fields, between domination by 
one eye and domination by the other, yields ocular dominance columns. The fastest 
growing mode in the linear regime will dominate the final pattern: if its receptive 
field is monocular, its wavelength will determine the width of the final columns. 

One can characterize the eigenfunctions analytically in various limiting cases. The 
general conclusion is as follows. The fastest growing mode's receptive field RF 
is largely determined by the correlation function CD. If the peak of the fourier 
transform of CD corresponds to a wavelength much larger than an arbor diameter, 
the mode will be monocular; if it corresponds to a wavelength smaller than an arbor 
diameter, the mode will be binocular. If CD selects a monocular mode, a broader 
CD (more sharply peaked fourier spectrum about wavenumber 0) will increase the 
dominance in growth rate of the monocular mode over other modes; in the limit 
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in which CD is constant with distance, only the monocular modes grow and all 
other modes decay. If the mode is monocular, the peak of the fourier transform of 
the cortical interaction function selects the wavelength of the cortical oscillation, 
and thus selects the wavelength of ocular dominance organization. In the limit in 
which correlations are broad with respect to an arbor, one can calculate that the 
growth rate of monocular modes as a function of wavenumber of oscillation m is 
proportional to E, i(m -1)6(1)..42 (1) (where X is the fourier transform of X). In 
this limit, only l's which are close to 0 can contribute to the sum, so the peak will 
occur at or near the m which maximizes i(m). 

There is an exception to the above results if constraints conserve, or limit the change 
in, the total synaptic strength over the arbor of an input cell. Then monocular 
modes with wavelength longer than an arbor diameter are suppressed in growth 
rate, since individual inputs would have to gain or lose strength throughout their 
arborization. Given a correlation function that leads to monocular cells, a purely 
excitatory cortical interaction function would lead a single eye to take over all 
of cortex; however, if constraints conserve synaptic strength over an input arbor, 
the wavelength will instead be about an arbor diameter, the largest wavelength 
whose growth rate is not suppressed. Thus, ocular dominance segregation can occur 
with a purely excitatory cortical interaction function, though this is a less robust 
phenomenon. Analytically, a constraint conserving strength over afferent arbors, 
implemented by subtracting the average change in strength over an arbor at each 
iteration from each synapse in the arbor, transforms the previous expression for the 

growth rates to E, i(m -1)0(1)..42(1)(1- A~~!?)). 

COMPUTATION OF EIGENFUNCTIONS 

Eigenfunctions are computed on a grid, ~nd the resulting growthrates as a function 
of wavelength are compared to the analytical expression above, in the absence of 
constraints on afferents. The results, for the parameters used in figure (2), are 
shown in figure (4). The grey level indicates monocularity of the modes, defined as 
Er RF(r) normalized on a scale between 0 and 1 (described in Miller and Stryker 
(1989)). The analytical expression for the growth rate, 1rhose peak coincides in 
every case with the peak of i(m), accurately predicts the growth rate of monocular 
modes, even far from the limiting case in which the expression was derived. Broader 
correlations or opposite-eye anticorrelations enhance the monocularity of modes 
and the growth rate of monocular modes, while same-eye anticorrelations have the 
opposite effects. When same-eye anticorrelations are short range compared to an 
arbor radius, the fastest growing modes are binocular. 

Results obtained for calculations in the presence of constraints on afferents are 
also as predicted. With an excitatory cortical interaction function, the spectrum 
is radically changed by constraints, selecting a mode with a wavelength equal to 
an arbor diameter rather than one with a wavelength as wide as cortex. With the 
Mexican hat cortical interaction function used in the simulations, the constraints 
suppress the growth of long-wavelength monocular modes but do not alter the basic 
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Figure 4. Growth rate (vertical axis) as a function of inverse wavelength (horizontal 
axis) for the six sets of functions used in figure 2, computed on the same grids. Grey 
level codes maximum monocularity of modes with the given wavelength and growth 
rate, from fully monocular ( white) to fully binocular (black). The black curve 
indicates the prediction for relative growth rates of monocular modes given in the 
l~·mit of broad correlations, as described in the text. 

structure or peak of the spectrum. 

CONNECTIONS TO OTHER MODELS 

The model of Swindale (1980) for ocular dominance segregation emerges as a lim­
iting case of this model when correlations are constant over a bit more than an ar­
bor diameter. Swindale's model assumed an effective interaction between synapses 
depending only on eye of origin and distance across cortex. Our model gives a 
biological underpinning to this effective interaction in the limiting case, allows con­
sideration of more general correlation functions, and allows examination of the 
development of individual arbors and receptive fields and their relationships as well 
as of overall ocular dominance. 

Equation 2 is very similar to equations studied by others (Linsker, 1986, 1988; 
Sanger, this volume). There are several important differences in our results. First, 
in this model synapses are constrained to remain positive. Biological synapses are 
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either exclusively positive or exclusively negative, and in particular the projection of 
visual input to visual cortex is purely excitatory. Even if one is modelling a system 
in which there are both excitatory and inhibitory inputs, these two populations will 
almost certainly be statistically distinct in their activities and hence not treatable as 
a single population whose strengths may be either positive or negative. S D, on the 
other hand, is a biological variable which starts near 0 and may be either positive 
or negative. This allows for a linear analysis whose results will remain accurate in 
the presence of nonlinearities, which is crucial for biology. 

Second, we analyze the effect of intracortical synaptic interactions. These have two 
impacts on the modes: first, they introduce a phase variation or oscillation across 
cortex. Second, they typically enhance the growth rate of monocular modes relative 
to modes whose sign varies across the receptive field. 
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