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ABSTRACT 

DCPS (the Distributed Connectionist Production System) is a neural 
network with complex dynamical properties. Visualizing the energy 
landscapes of some of its component modules leads to a better intuitive 
understanding of the model, and suggests ways in which its dynamics 
can be controlled in order to improve performance on difficult cases. 

INTRODUCTION 

Competition through mutual inhibition appears in a wide variety of network designs. 
This paper discusses a system with unusually complex competitive dynamics. The 
system is DCPS, the Distributed Connectionist Production System of Touretzky 
and Hinton (1988). DCPS is a Boltzmann machine composed of five modules, 
two of which, labeled "Rule Space" and "Bind Space," are winner-take-all (WTA) 
networks. These modules interact via their effects on two attentional mod ules called 
clause spaces. Clause spaces are another type of competitive architecture based on 
mutual inhibition, but they do not produce WTA behavior. Both clause spaces 
provide evidential input to both WTA nets, but since connections are symmetric 
they also receive top-down "guidance" from the WTA nets. Thus, unlike most 
other competitive architectures, in DCPS the external input to a WTA net does 
not remain constant as its state evolves. Rather, the present output of the WTA 
net helps to determine which evidence will become visible in the clause spaces in the 
future. This dynamic attentional mechanism allows rule and bind spaces to work 
together even though they are not directly connected. 

DCPS actually uses a distributed version of winner-take-all networks whose oper
ating characteristics differ slightly from the non-distributed version. Analyzing the 
energy landscapes of DWTA networks has led to a better intuitive understanding 
of their dynamics. For a complete discussion of the role of DWTA nets in DCPS, 
and the ways in which insights gained from visualization led to improvements in 
the system's stochastic search behavior, see [Touretzky, 1989]. 
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DISTRIBUTED WINNER-TAKE-ALL NETWORKS 

In classical WTA nets [Feldman & Ballard, 1982], a unit's output value is a continu
ous quantity that reflects its activation level. In this paper we analyze a stochastic, 
distributed version of winner-take-all dynamics using Boltzmann machines, whose 
units have only binary outputs [Hinton & Sejnowski, 1986]. The amount of eviden
tial input to these units determines its energy gap [Hopfield, 1982], which in turn 
determines its probability of being active. The network's degree of confidence in 
a hypothesis is thus reflected in the amount of time the unit spends in the active 
state. A good instantaneous approximation to strength of support can be obtained 
by representing each hypothesis with a clique of k independent units looking at a 
common evidence pool. The number of active units in a clique reflects the strength 
of that hypothesis. DCPS uses cliques of size 40. Units in rival cliques compete via 
inhibitory connections 

If all units in a clique have identical receptive fields, the result is an "ensemble" 
Boltzmann machine [Derthick & Tebelskis, 1988]. In DCPS the units have only 
moderately sized, but highly overlapped, receptive fields, so the amount of evidence 
individual units perceive is distributed binomially. Small excitatory weights between 
sibling units help make up for variations in external evidence. They also make states 
where all the units in a single clique are active be powerful attractors. 

Energy tours in a DWTA take one of four basic shapes. Examples may be seen in 
Figure 1a. Let e be the amount of external evidence available to each unit, 0 the 
unit's threshold, k the clique size, and W, the excitatory weight between siblings. 
The four shapes are: 

Eager vee: the evidence is above threshold (e > 0). The system is eager to 
turn units on; energy decreases as the number of active units goes up. We 
have a broad, deep energy well, which the system will naturally fall into given 
the chance. 

Reluctant vee: the evidence is below threshold, but a little bit of sibling 
influence (fewer than k/2 siblings) is enough to make up the difference and 
put the system over the energy barrier. We have e < 0 < e +w,(k-1)/2. The 
system is initially reluctant to turn units on because that causes the energy to 
go up, but once over the hump it willingly turns on more units. With all units 
in the clique active, the system is in an energy well whose energy is below 
zero. 

Dimpled peak: with higher thresholds the total energy of the network may 
remain above zero even when all units are on. This happens when more than 
half of the siblings must be active to boost each unit above threshold, i.e., 
e + w,(k - 1) > 0 > e + w,(k - 1)/2. The system can still be trapped in 
the small energy well that remains, but only at low temperatures. The well 
is hard to reach since the system must first cross a large energy barrier by 
traveling far uphill in energy space. Even if it does visit the well, the system 
may easily bounce out of it again if the well is shallow. 
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Smooth peak: when () > e + w.(k - 1), units will be below threshold even 
with full sibling support. In this case there is no energy well, only a peak. 
The system wants to turn all units off. 

VISUALIZING ENERGY LANDSCAPES 

Let's examine the energy landscape of one WTA space when there is ample evidence 
in the clause spaces for the winning hypothesis. We select three hypotheses, A, B, 
and C, with disjoint evidence populations. Let hypothesis B be the best supported 
one with evidence 100, and let A have evidence 40 and C have evidence 5. We will 
simplify the situation slightly by assuming that all units in a clique perceive exactly 
the same evidence. In the left half of Figure 1 b we show the energy curves for A, 
B, and C, using a value of 69 for the unit thresholds.1 Each curve is generated by 
starting with all units turned off; units for a particular hypothesis are turned on one 
at a time until all 40 are on; then they are turned off again one at a time, making 
the curve symmetric. Since the evidence for hypothesis A is a bit below threshold, 
its curve is of the "reluctant vee" type. The evidence for hypothesis B is well above 
threshold, so its curve is an "eager vee." Hypothesis C has almost no evidence; its 
"dimpled peak" shape is due almost entirely to sibling support. (Sibling weights 
have a value of +2; rival weights a value of -2.) 

Note that the energy well for B is considerably deeper than for A. This means at 
moderate temperature the model can pop out of A's energy well, but it is more 
likely to remain in B's well. The well for B is also somewhat broader than the well 
for A, making it easier for the B attractor to capture the model; its attract or region 
spans a larger portion of state space. 

The energy tours for hypotheses A, B, and C correspond to traversing three or
thogonal edges extending from a corner of a 40 x 40 x 40 cube. A point at location 
(x, y, z) in this cube corresponds to x A units, y B units, and z C units being 
active. During the stochastic search, A and B units will be flickering on and off 
simultaneously, so the model will also visit internal points of the cube not covered 
in the energy tour diagram. To see these points we will use two additional graphic 
representations of energy landscapes. First, note that hypothesis C gets so little 
support that we safely can ignore it and concentrate on A and B. This allows us 
to focus on just the front face of the state space cube. In Figure 2a, the number 
of active A units runs from zero to forty along the vertical axis, and the number of 
active B units runs from zero to forty along the horizontal axis. The arrows at each 
point on the graph show legal state transitions at zero temperature. For example, 
at the point where there are are 38 active B units and 3 active A units there are 
two arrows, pointing down and to the right. This means there are two states the 
model could enter next: it could either turn off one of the active A units, or turn 
on one more B unit, respectively. At nonzero temperatures other state transitions 

1 All the weights and thresholds used in this paper are actual DCPS values taken from [Touretzky 
& Hinton, 1988]. 



Energy Landscapes of Distributed Winner-Take-All Networks 629 

are possible, corresponding to uphill moves in energy space, but these two remain 
the most probable. 

The points in the upper left and lower right corners of Figure 2a are marked by 
"Y" shapes. These represent point attractors at the bottoms of energy wells; the 
model will not move out of these states unless the temperature is greater than zero. 
Other points in state space are said to be within the region of a particular attractor 
if all legal transition sequences (at T = 0) from those points lead eventually to the 
attractor. The attractor regions of A and B are outlined in the figure. Note that 
the B attractor covers more area than A, as predicted by its greater breadth in 
the energy tour diagram. Note also that there is a small ridge between the two 
attractor regions. From starting points on the ridge the model can end up in either 
final state. 

Figure 2b shows the depths of the two attractors. The energy well for B is substan
tially deeper than the well for A. Starting at the point in the lower left corner where 
there are zero A units and zero B units active, the energy falls off immediately when 
moving in the B direction (right), but rises initially in the A direction (left) before 
dropping into a modest energy well when most of the A units are on. Points in 
the interior of the diagram, representing a combination of A and B units active, 
have higher energies than points along the edges due to the inhibitory connections 
between units in rival cliques. 

We can see from Figures lb and 2 that the attractor for A, although narrower and 
shallower than the one for B, is still sizable. This is likely to mislead the model, so 
that some of the time it will get trapped in the wrong energy well. The fact that 
there is an attractor for A at all is due largely to sibling support, since the raw 
evidence for A is less than the rule unit threshold. 

We can eliminate the unwanted energy well for A by choosing thresholds that exceed 
the maximum sibling support of 2 x 39 = 78. DCPS uses a value of 119. However, 
early in the stochastic search the evidence visible in the clause spaces will be lower 
than at the conclusion of the search; high thresholds combined with low evidence 
would make the B attractor small and very hard to find. (See the right half of 
Figure Ie, and Figure 3.) Under these conditions the largest attractor is the one 
with all units turned off: the null hypothesis. ' 

DISCUSSION 

Our analysis of energy landscapes pulls us in two directions: we need low thresholds 
so the correct attractor is broad and easy to find, but we need high thresholds to 
eliminate unwanted at tractors associated with local energy minima. Two solutions 
have been investigated. The first is to start out with low thresholds and raise them 
gradually during the stochastic search. This "pulls the rug out from under" poorly
supported hypotheses while giving the model time to find the desired winner. The 
second solution involves clipping a corner from the state space hypercube so that 
the model may never have fewer than 40 units active at a time. This prevents the 
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model from falling into the null attractor. When it attempts to drop the number of 
active units below 40 it is kicked away from the clipped edge by forcing it to turn 
on a few inactive units at random. 

Although DCPS is a Boltzmann machine it does not search the state space by 
simulated annealing in the usual sense. True annealing implies a slow reduction 
in temperature over many update cycles. Stochastic search in DCPS takes place 
at a single temperature that has been empirically determined to be the model's 
approximate "melting point." The search is only allowed to take a few cycles; 
typically it takes less than 10. Therefore the shapes of energy wells and the dynamics 
of the search are particularly important, as they determine how likely the model is 
to wander into particular attractor regions. 

The work reported here suggests that stochastic search dynamics may be improved 
by manipulating parameters other than just absolute temperature and cooling rate. 
Threshold growing and corner clipping appear useful in the case of DWTA nets. 
Additional details are available in [Touretzky, 1989]. 
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Figure 1: (a) four basic shapes for DWTA energy tours; (b) comparison of low 
vs. high thresholds in energy tours where there is a high degree of evidence for 
hypothesis B; (c) corresponding tours with low evidence for B. 



'~~'eJms A~J~U~ ~u!puods~JJo~ ~q'l (q) !~m'l'eJ~dw~'l OJ~Z 'l'e SUO!'l!su'eJ'l ~'l'e'ls I'e~~1 
('e) 'q 1 ~m~!d JO Jl'eq U~l ~q'l U! S'e '~~U~P!A~ q~!q pU'e sPloqs~Jq'l MOl :~ ~JI1~!d 

.... \~t'> ••• 
~':J. 

fb e" 

'69 = PT o4sa.J41 

"QIlI1 r 
•1Ik». 

'001=8 'O~=~ :aouapT A3 

A~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

14444444444444444 44444444444444444 

1444444444444444444444444444444444~44444 
1444444444444444444444444444444444444444 
1444444444444444444444444444444444444444 
1444444444444444444444444444444444444444 
1444444444444444444444444444444444444444 
144444444444444444444444444~444444444444 
1444444~4444444444444444444~444444444444 
1444444444444444444444444444444444444444 
1444444444444444444444444444444444444444 
1444444444444444444444444444444444444444 
1444444444444444444444444444444444444444 
'4444444444444444~4444444444444444444 
14444444444444444 44444444444444444444 
14444444444444444 4 44444444444444444444 
14444444444444444 4444444444444444444 

14444444444444444 4444444444444444 ~ 
144444444444444444 444444444444444 ~~ 
14444444444444444444444444444444444 ~~~ 
1444444444444444444444444444444444 ~~~~ 
144444444444444444444444444444444 ~~~~~ 
14444444444444444444444444444444 ~~~~~~ 
1444444444444444444444444444444 ~~~~~~~ 
144444444444444444444444444444 ~~~~~~~~ 
14444444444444444444444444444 ~~~~~~~~~ 
1444444444444444444444444444 ~~~~~~~~~~ 
144444444444444444444444444 ~~~~~~~~~~~ 
14444444444444444444444444 ~~~~~~~~~~~~ 
1444444444444444444444444 ~~~~~~~~~~~~~ 
144444444444444444444444 ~~~~~~~~~~~~~~ 
14444444444444444444444 ~~~~~~~~~~~~~~~ 
1444444444444444444444 ~~~~~~~~~~~~~~~~ 
144444444444444444444 ~~~~~~~~~~ ~~~~ 
14444444444444444444 ~~~~~~~~~ ~~ ~~~~~ 
1444444444444444444 ~~~~~~~~~~ ~~~~~ 
144444444444444444 ~~~~~~~~~~~~ ~~~~~ 
14444444444444444 ~~~~~~~~~~~~~~ ~~~~~~ 
1444444444444444 ~~~~~~~~~~~~~~~~~~~~~~ 
144444444444444 ~~~~~~~~~~~~~~~~~~~~~~~ 
144 ~~~~~~~~~~~~~~~~~~~~~~~ 

AlIZla,m0J, ~f!9 



t-t:;.! 
~~ 
~ ... 
-('I) 
~ 
~~ 
~ .. 
~ 

('I) == 
~ ..... ... oq 
~ ::r ; ~ ..... ::r 
C-. ... o ('I) 
~ ~ 
~ I:T' 

o 
~ -~o.. 
N fI) 

('I) ~ ... ~ o 0.. 

~-('I) 0 

S == "'C:j ('I) 

~ < 
~ ..... 
~o.. 
~ ('I) 
... ~ 
('I) (") _. ('I) 

..--
O"'~ 
"-"~ 
~ ..... 
::r~ 
('I) ~ 
(") I:T' 
o ('I) ... ... ... 
('I) ..... 
~oq 

"t:I::r o ~ 
5..;-..... -~ ...., 

oq 0 
('I) ...., 

~ ~ 
('I) ..... 
"'oq 

oq ~ 
'< ... 
~ ('I) 

~ .... 
... (") 
~. 
(")..-

~~ 

tTl. 
4 

I 

'\ • ., 
~ • 

,.., 
< .... 
a. 
III 
:J 
0 
III 

l> 
II 
A 
0 
• 
tIl 
II 
m 
0 · 
-i 
~ .., 
III 
Ul 
~ 
0 .... 
0.. 

II 

..... ..... 
\0 · 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

1444444444444444444444444444444444444444 
1444444444444444444444444444444444444444 
1444444444444444444444444444444444444444 
1444444444444444444444444444444444444444 
1444444444444444444444444444444444444444 
1444444444444444444444444444444444444444 
14444444444444444444~44444444444444 
14444444444444444444444 444444444444444 
t44444444444444444444 4 44444444444444 
t44444444444444444444 44444444444444 
t444444444444444444444444444444444444444 
t44444444444~4444444~4444444444444444 
t4444444444444444444 4444444444444444 
t44444444444444444444 44444444444444444 
t44444444444444444441 44444444444444 
t44444444444444444444. 1144444444444444 
1444444444444444444444444444444444444444 
t444444444444444444444444444444444444444 
t444444444444444444444444444444444444444 
1444444444444444444444444444444444444444 
1444444444444444444444444444444444444444 
t444444444444444444444444444444444444444 
t444444444444444444444444444444444444444 
t444444444444444444444444444444444444444 
t444444444444444444444444444444444444444 
1444444444444444444444444444444444444444 
1444444444444444444444444444444444444444 
t444444444444444444444444444444444444444 
14 4444444 444 4 4 

, 444444444444444444444444444444444444444 
,~ 44444444444444444444444444444444444444 
,~ 4444444444444444444444444444444444444 
,~~ 444444444444444444444444444444444444 
,~~~ 44444444444444444444444444444444444 
, 4444444444444444444444444444444444 
, ~ 444444444444444444444444444444444 
l ~~ 44444444444444444444444444444444 
l~~~~~~~ 4444444444444444444444444444444 

444444444444444444444444444444 

tE.1 

~ 
r 
~ 
(D 
fI) 

~ 
~ 
fI) 

&: 
0'" 
~ 
~ 
j;l.. 

~ 
~ 

~ 
~ 
(D 

~ -z 
(D 

i 
a-

0) 
to 
c.o 


